Menu Close

Question-26686




Question Number 26686 by Rasheed.Sindhi last updated on 28/Dec/17
Commented by Rasheed.Sindhi last updated on 28/Dec/17
Question#26312 by Mr Shivram198922  reposted here to refocus the question.
$$\mathrm{Question}#\mathrm{26312}\:\mathrm{by}\:\mathrm{Mr}\:\mathrm{Shivram198922} \\ $$$$\mathrm{reposted}\:\mathrm{here}\:\mathrm{to}\:\mathrm{refocus}\:\mathrm{the}\:\mathrm{question}. \\ $$
Answered by Rasheed.Sindhi last updated on 28/Dec/17
The bigger circle is divided into  quarters. Each quarter contains  three numbers: Outer number(O)  and two inner numbers(i_1  & i_2 ).  The relation, I′ve discovered is:       (O)mod(i_1 +i_2 ) is whole power of 2  65 mod(2+7)=2=2^1   233 mod(6+9)=8=2^3   130 mod(3+4)=4=2^2    300 mod(5+8)=1=2^0   But      141 mod(5+8)=11^∗       278 mod(5+8)=5^∗       306 mod(5+8)=7^∗   ∗ 11,5 & 7 are not whole powers     of 2    ∴   ? = 300
$$\mathrm{The}\:\mathrm{bigger}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{into} \\ $$$$\mathrm{quarters}.\:\mathrm{Each}\:\mathrm{quarter}\:\mathrm{contains} \\ $$$$\mathrm{three}\:\mathrm{numbers}:\:\mathrm{Outer}\:\mathrm{number}\left(\mathrm{O}\right) \\ $$$$\mathrm{and}\:\mathrm{two}\:\mathrm{inner}\:\mathrm{numbers}\left(\mathrm{i}_{\mathrm{1}} \:\&\:\mathrm{i}_{\mathrm{2}} \right). \\ $$$$\mathrm{The}\:\mathrm{relation},\:\mathrm{I}'\mathrm{ve}\:\mathrm{discovered}\:\mathrm{is}: \\ $$$$ \\ $$$$\:\:\:\left(\mathrm{O}\right)\mathrm{mod}\left(\mathrm{i}_{\mathrm{1}} +\mathrm{i}_{\mathrm{2}} \right)\:\mathrm{is}\:\mathrm{whole}\:\mathrm{power}\:\mathrm{of}\:\mathrm{2} \\ $$$$\mathrm{65}\:\mathrm{mod}\left(\mathrm{2}+\mathrm{7}\right)=\mathrm{2}=\mathrm{2}^{\mathrm{1}} \\ $$$$\mathrm{233}\:\mathrm{mod}\left(\mathrm{6}+\mathrm{9}\right)=\mathrm{8}=\mathrm{2}^{\mathrm{3}} \\ $$$$\mathrm{130}\:\mathrm{mod}\left(\mathrm{3}+\mathrm{4}\right)=\mathrm{4}=\mathrm{2}^{\mathrm{2}} \\ $$$$\:\mathrm{300}\:\mathrm{mod}\left(\mathrm{5}+\mathrm{8}\right)=\mathrm{1}=\mathrm{2}^{\mathrm{0}} \\ $$$$\mathrm{But} \\ $$$$\:\:\:\:\mathrm{141}\:\mathrm{mod}\left(\mathrm{5}+\mathrm{8}\right)=\mathrm{11}^{\ast} \\ $$$$\:\:\:\:\mathrm{278}\:\mathrm{mod}\left(\mathrm{5}+\mathrm{8}\right)=\mathrm{5}^{\ast} \\ $$$$\:\:\:\:\mathrm{306}\:\mathrm{mod}\left(\mathrm{5}+\mathrm{8}\right)=\mathrm{7}^{\ast} \\ $$$$\ast\:\mathrm{11},\mathrm{5}\:\&\:\mathrm{7}\:\mathrm{are}\:\mathrm{not}\:\mathrm{whole}\:\mathrm{powers}\:\:\: \\ $$$$\mathrm{of}\:\mathrm{2} \\ $$$$\:\:\therefore\:\:\:?\:=\:\mathrm{300}\:\:\: \\ $$
Commented by shivram198922@gmail.com last updated on 30/Dec/17
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *