Menu Close

Question-26951




Question Number 26951 by Tinkutara last updated on 31/Dec/17
Answered by prakash jain last updated on 31/Dec/17
5cos 2θ+12sin 2θ=13  5(1−2sin^2 θ)+24sin θcos θ=13  10sin^2 θ−24sin θcos θ+8=0  10tan^2 θ−24tan θ+8(sec^2 θ)=0  10tan^2 θ−24tan θ+8(1+tan^2 θ)=0  18tan^2 θ−24tan θ+8=0  tan θ_1 ∙tan θ_2 =(8/(18))=(4/9)  9tan θ_1 ∙tan θ_2 =4
$$\mathrm{5cos}\:\mathrm{2}\theta+\mathrm{12sin}\:\mathrm{2}\theta=\mathrm{13} \\ $$$$\mathrm{5}\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \theta\right)+\mathrm{24sin}\:\theta\mathrm{cos}\:\theta=\mathrm{13} \\ $$$$\mathrm{10sin}^{\mathrm{2}} \theta−\mathrm{24sin}\:\theta\mathrm{cos}\:\theta+\mathrm{8}=\mathrm{0} \\ $$$$\mathrm{10tan}^{\mathrm{2}} \theta−\mathrm{24tan}\:\theta+\mathrm{8}\left(\mathrm{sec}^{\mathrm{2}} \theta\right)=\mathrm{0} \\ $$$$\mathrm{10tan}^{\mathrm{2}} \theta−\mathrm{24tan}\:\theta+\mathrm{8}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)=\mathrm{0} \\ $$$$\mathrm{18tan}^{\mathrm{2}} \theta−\mathrm{24tan}\:\theta+\mathrm{8}=\mathrm{0} \\ $$$$\mathrm{tan}\:\theta_{\mathrm{1}} \centerdot\mathrm{tan}\:\theta_{\mathrm{2}} =\frac{\mathrm{8}}{\mathrm{18}}=\frac{\mathrm{4}}{\mathrm{9}} \\ $$$$\mathrm{9tan}\:\theta_{\mathrm{1}} \centerdot\mathrm{tan}\:\theta_{\mathrm{2}} =\mathrm{4} \\ $$
Commented by Tinkutara last updated on 31/Dec/17
Thank you very much Sir! I got the answer.

Leave a Reply

Your email address will not be published. Required fields are marked *