Menu Close

Question-27033




Question Number 27033 by Tinkutara last updated on 01/Jan/18
Answered by mrW1 last updated on 01/Jan/18
((L/(2h)))^2 =(H/(H−h))=(H/(H−((3H)/4)))=4  ⇒L=4h
$$\left(\frac{{L}}{\mathrm{2}{h}}\right)^{\mathrm{2}} =\frac{{H}}{{H}−{h}}=\frac{{H}}{{H}−\frac{\mathrm{3}{H}}{\mathrm{4}}}=\mathrm{4} \\ $$$$\Rightarrow{L}=\mathrm{4}{h} \\ $$
Commented by mrW1 last updated on 02/Jan/18
actually I used no physics formula.  we know the projectile is a parabola.  in the coordinate system shown  below we have  (y_2 /y_1 )=((x_2 /x_1 ))^2   y_1 =H−h=(H/4)  y_2 =H  x_1 =h  x_2 =(L/2)  ⇒4=((L/(2h)))^2   ⇒L=4h
$${actually}\:{I}\:{used}\:{no}\:{physics}\:{formula}. \\ $$$${we}\:{know}\:{the}\:{projectile}\:{is}\:{a}\:{parabola}. \\ $$$${in}\:{the}\:{coordinate}\:{system}\:{shown} \\ $$$${below}\:{we}\:{have} \\ $$$$\frac{{y}_{\mathrm{2}} }{{y}_{\mathrm{1}} }=\left(\frac{{x}_{\mathrm{2}} }{{x}_{\mathrm{1}} }\right)^{\mathrm{2}} \\ $$$${y}_{\mathrm{1}} ={H}−{h}=\frac{{H}}{\mathrm{4}} \\ $$$${y}_{\mathrm{2}} ={H} \\ $$$${x}_{\mathrm{1}} ={h} \\ $$$${x}_{\mathrm{2}} =\frac{{L}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}=\left(\frac{{L}}{\mathrm{2}{h}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{L}=\mathrm{4}{h} \\ $$
Commented by mrW1 last updated on 02/Jan/18
Commented by Tinkutara last updated on 02/Jan/18
Thank you very much Sir! I got the answer.

Leave a Reply

Your email address will not be published. Required fields are marked *