Menu Close

Question-27059




Question Number 27059 by math solver last updated on 01/Jan/18
Commented by prakash jain last updated on 01/Jan/18
1+z+z^2 =x−xz+xz^2   z^2 (1−x)+z(1+x)+(1−x)=0  Given z is not real, root are  complex conjugate  α=z,β=z^�   ∣z∣^2 =z∙z^� =α∙β=((1−x)/(1−x))=1
$$\mathrm{1}+{z}+{z}^{\mathrm{2}} ={x}−{xz}+{xz}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)+{z}\left(\mathrm{1}+{x}\right)+\left(\mathrm{1}−{x}\right)=\mathrm{0} \\ $$$$\mathrm{Given}\:{z}\:\mathrm{is}\:\mathrm{not}\:\mathrm{real},\:\mathrm{root}\:\mathrm{are} \\ $$$$\mathrm{complex}\:\mathrm{conjugate} \\ $$$$\alpha={z},\beta=\bar {{z}} \\ $$$$\mid{z}\mid^{\mathrm{2}} ={z}\centerdot\bar {{z}}=\alpha\centerdot\beta=\frac{\mathrm{1}−{x}}{\mathrm{1}−{x}}=\mathrm{1} \\ $$
Commented by math solver last updated on 02/Jan/18
thank you sir!
$${thank}\:{you}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *