Menu Close

Question-27060




Question Number 27060 by math solver last updated on 01/Jan/18
Commented by math solver last updated on 02/Jan/18
plz help?
$${plz}\:{help}? \\ $$$$ \\ $$
Answered by prakash jain last updated on 02/Jan/18
((k−z_1 z_2 ^� )/(z_1 −kz_2 ))×((k−z_1 ^� z_2 )/(z_1 ^� −kz_2 ^� ))=1  k^2 +∣z_1 ∣^2 ∣z_2 ∣^2 −k(z_1 z_2 ^� +z_2 z_1 ^� )  =∣z_1 ∣^2 +k^2 ∣z_2 ∣^2 −k(z_1 z_2 ^� +z_2 z_1 ^� )  k^2 +∣z_1 ∣^2 ∣z_2 ∣^2 =∣z_1 ∣^2 +k^2 ∣z_2 ∣^2   ∣z_2 ∣^2 =1
$$\frac{{k}−{z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} }{{z}_{\mathrm{1}} −{kz}_{\mathrm{2}} }×\frac{{k}−\bar {{z}}_{\mathrm{1}} {z}_{\mathrm{2}} }{\bar {{z}}_{\mathrm{1}} −{k}\bar {{z}}_{\mathrm{2}} }=\mathrm{1} \\ $$$${k}^{\mathrm{2}} +\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} −{k}\left({z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} +{z}_{\mathrm{2}} \bar {{z}}_{\mathrm{1}} \right) \\ $$$$=\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} +{k}^{\mathrm{2}} \mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} −{k}\left({z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} +{z}_{\mathrm{2}} \bar {{z}}_{\mathrm{1}} \right) \\ $$$${k}^{\mathrm{2}} +\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} =\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} +{k}^{\mathrm{2}} \mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \\ $$$$\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} =\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *