Menu Close

Question-27061




Question Number 27061 by math solver last updated on 01/Jan/18
Commented by math solver last updated on 02/Jan/18
pLz help?
$${pLz}\:{help}? \\ $$
Answered by prakash jain last updated on 02/Jan/18
x^2 +px+q^2 =0  root u,v   u,v∈C  uu^� =vv^� ⇒u=((vv^� )/2)  (A)  u+v=−p⇒p^2 =u^2 +v^2 +2uv  uv=q^2   (p^2 /q^2 )=(u/v)+(v/u)+2  (B)  subtitute u from (A) to (B)  (p^2 /q^2 )=((vv^� )/(vu^� ))+((vu^� )/(vv^� ))+2  (p^2 /q^2 )=(v^� /u^� )+(u^� /v^� )+2     (C)  (B)+(C)  2(p^2 /q^2 )=((u/v)+(u^� /v^� ))+((v/u)+(v^� /u^� ))+4  2(p^2 /q^2 )=ℜ((u/v))+ℜ((v/u))+4=real number  will need to prove ℜ((u/v))+ℜ((v/u))>−4
$${x}^{\mathrm{2}} +{px}+{q}^{\mathrm{2}} =\mathrm{0} \\ $$$${root}\:{u},{v}\:\:\:{u},{v}\in\mathbb{C} \\ $$$${u}\bar {{u}}={v}\bar {{v}}\Rightarrow{u}=\frac{{v}\bar {{v}}}{\mathrm{2}}\:\:\left({A}\right) \\ $$$${u}+{v}=−{p}\Rightarrow{p}^{\mathrm{2}} ={u}^{\mathrm{2}} +{v}^{\mathrm{2}} +\mathrm{2}{uv} \\ $$$${uv}={q}^{\mathrm{2}} \\ $$$$\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} }=\frac{{u}}{{v}}+\frac{{v}}{{u}}+\mathrm{2}\:\:\left({B}\right) \\ $$$${subtitute}\:{u}\:{from}\:\left({A}\right)\:{to}\:\left({B}\right) \\ $$$$\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} }=\frac{{v}\bar {{v}}}{{v}\bar {{u}}}+\frac{{v}\bar {{u}}}{{v}\bar {{v}}}+\mathrm{2} \\ $$$$\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} }=\frac{\bar {{v}}}{\bar {{u}}}+\frac{\bar {{u}}}{\bar {{v}}}+\mathrm{2}\:\:\:\:\:\left({C}\right) \\ $$$$\left({B}\right)+\left({C}\right) \\ $$$$\mathrm{2}\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} }=\left(\frac{{u}}{{v}}+\frac{\bar {{u}}}{\bar {{v}}}\right)+\left(\frac{{v}}{{u}}+\frac{\bar {{v}}}{\bar {{u}}}\right)+\mathrm{4} \\ $$$$\mathrm{2}\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} }=\Re\left(\frac{{u}}{{v}}\right)+\Re\left(\frac{{v}}{{u}}\right)+\mathrm{4}=\mathrm{real}\:\mathrm{number} \\ $$$$\mathrm{will}\:\mathrm{need}\:\mathrm{to}\:\mathrm{prove}\:\Re\left(\frac{{u}}{{v}}\right)+\Re\left(\frac{{v}}{{u}}\right)>−\mathrm{4} \\ $$
Answered by shiv15031973@gmail.com last updated on 05/Jan/18
rational no. as it is written in the   form of(p/q)
$${rational}\:{no}.\:{as}\:{it}\:{is}\:{written}\:{in}\:{the} \\ $$$$\:{form}\:{of}\frac{{p}}{{q}} \\ $$
Commented by prakash jain last updated on 05/Jan/18
p and q are given as complex.
$${p}\:\mathrm{and}\:{q}\:\mathrm{are}\:\mathrm{given}\:\mathrm{as}\:\mathrm{complex}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *