Question Number 27074 by Tinkutara last updated on 01/Jan/18

Answered by mrW1 last updated on 01/Jan/18

Commented by mrW1 last updated on 02/Jan/18
![dm=λdx=(a_0 +b_0 x^2 )dx dF=((Gmdm)/((a+x)^2 ))=((Gm(a_0 +b_0 x^2 )dx)/((a+x)^2 )) F=∫_0 ^( L) ((Gm(a_0 +b_0 x^2 )dx)/((a+x)^2 )) F=Gm∫_0 ^( L) (((a_0 +b_0 x^2 )dx)/((a+x)^2 )) F=Gm{a_0 [(1/(a+x))]_L ^0 +b_0 ∫_0 ^( L) ((x^2 dx)/((a+x)^2 ))} F=Gm{a_0 ((1/a)−(1/(a+L)))+b_0 [x−2a ln (x+a)−(a^2 /(x+a))]_0 ^L } F=Gm{a_0 ((1/a)−(1/(a+L)))+b_0 (L+2a ln (a/(a+L))+a−(a^2 /(a+L)))} F=Gm{((a_0 L)/(a(a+L)))+b_0 [2a ln (a/(a+L))+(((2a+L)L)/(a+L))]}](https://www.tinkutara.com/question/Q27079.png)
Commented by mrW1 last updated on 02/Jan/18
![∫(x^2 /((a+x)^2 ))dx =∫((x^2 +2ax+a^2 −2ax−a^2 )/((a+x)^2 ))dx =∫[1−((2ax+a^2 )/((a+x)^2 ))]dx =∫[1−((2ax+2a^2 −a^2 )/((a+x)^2 ))]dx =x−∫((2a(x+a))/((a+x)^2 ))dx+a^2 ∫(1/((a+x)^2 ))dx =x−2a∫(1/(a+x))dx−(a^2 /(a+x)) =x−2a ln ∣a+x∣−(a^2 /(a+x))+C](https://www.tinkutara.com/question/Q27116.png)
Commented by Tinkutara last updated on 02/Jan/18

Commented by Tinkutara last updated on 02/Jan/18
There is slight mistake in ln term. Answer given is:
Commented by Tinkutara last updated on 02/Jan/18

Commented by mrW1 last updated on 02/Jan/18

Commented by mrW1 last updated on 02/Jan/18
![[−2a ln (a+x)]_0 ^L =−2a[ln (a+L)−ln a]=−2a ln ((a+L)/a)=2a ln (a/(a+L))](https://www.tinkutara.com/question/Q27126.png)
Commented by Tinkutara last updated on 03/Jan/18
Thank you very much Sir!
Answered by ajfour last updated on 02/Jan/18
![F=∫_0 ^( L) ((Gm(a_0 +b_0 x^2 )dx)/((x+a)^2 )) =Gm∫_a ^( a+L) (([a_0 +b_0 (t−a)^2 ]dt)/t^2 ) =Gm(−(a_0 /t))∣_a ^(a+L) +b_0 Gm∫_a ^( a+L) [1−((2a)/t)+(a^2 /t^2 )]dt =((Gma_0 L)/(a(a+L)))+b_0 Gm[L−2aln (((a+L)/a))+((a^2 L)/(a(a+L)))] =Gm[((L(a_0 +a^2 b_0 ))/(a(a+L)))+b_0 L−2ab_0 ln (1+(L/a))] .](https://www.tinkutara.com/question/Q27131.png)
Commented by mrW1 last updated on 02/Jan/18

Commented by Tinkutara last updated on 03/Jan/18
Thank you very much Sir!