Menu Close

Question-27074




Question Number 27074 by Tinkutara last updated on 01/Jan/18
Answered by mrW1 last updated on 01/Jan/18
Commented by mrW1 last updated on 02/Jan/18
dm=λdx=(a_0 +b_0 x^2 )dx  dF=((Gmdm)/((a+x)^2 ))=((Gm(a_0 +b_0 x^2 )dx)/((a+x)^2 ))  F=∫_0 ^( L) ((Gm(a_0 +b_0 x^2 )dx)/((a+x)^2 ))  F=Gm∫_0 ^( L) (((a_0 +b_0 x^2 )dx)/((a+x)^2 ))  F=Gm{a_0 [(1/(a+x))]_L ^0 +b_0 ∫_0 ^( L) ((x^2 dx)/((a+x)^2 ))}  F=Gm{a_0 ((1/a)−(1/(a+L)))+b_0 [x−2a ln (x+a)−(a^2 /(x+a))]_0 ^L }  F=Gm{a_0 ((1/a)−(1/(a+L)))+b_0 (L+2a ln (a/(a+L))+a−(a^2 /(a+L)))}  F=Gm{((a_0 L)/(a(a+L)))+b_0 [2a ln (a/(a+L))+(((2a+L)L)/(a+L))]}
dm=λdx=(a0+b0x2)dxdF=Gmdm(a+x)2=Gm(a0+b0x2)dx(a+x)2F=0LGm(a0+b0x2)dx(a+x)2F=Gm0L(a0+b0x2)dx(a+x)2F=Gm{a0[1a+x]L0+b00Lx2dx(a+x)2}F=Gm{a0(1a1a+L)+b0[x2aln(x+a)a2x+a]0L}F=Gm{a0(1a1a+L)+b0(L+2alnaa+L+aa2a+L)}F=Gm{a0La(a+L)+b0[2alnaa+L+(2a+L)La+L]}
Commented by mrW1 last updated on 02/Jan/18
 ∫(x^2 /((a+x)^2 ))dx   =∫((x^2 +2ax+a^2 −2ax−a^2 )/((a+x)^2 ))dx   =∫[1−((2ax+a^2 )/((a+x)^2 ))]dx   =∫[1−((2ax+2a^2 −a^2 )/((a+x)^2 ))]dx   =x−∫((2a(x+a))/((a+x)^2 ))dx+a^2 ∫(1/((a+x)^2 ))dx   =x−2a∫(1/(a+x))dx−(a^2 /(a+x))   =x−2a ln ∣a+x∣−(a^2 /(a+x))+C
x2(a+x)2dx=x2+2ax+a22axa2(a+x)2dx=[12ax+a2(a+x)2]dx=[12ax+2a2a2(a+x)2]dx=x2a(x+a)(a+x)2dx+a21(a+x)2dx=x2a1a+xdxa2a+x=x2alna+xa2a+x+C
Commented by Tinkutara last updated on 02/Jan/18
How do you solved ∫(x^2 /((a+x)^2 ))dx?
Howdoyousolvedx2(a+x)2dx?
Commented by Tinkutara last updated on 02/Jan/18
There is slight mistake in ln term. Answer given is:
Commented by Tinkutara last updated on 02/Jan/18
Commented by mrW1 last updated on 02/Jan/18
please recheck the answer in your book.  i think the last term should be  +2ab_0  ln (a/(a+L)) or  −2ab_0  ln ((a+L)/a)
pleaserechecktheanswerinyourbook.ithinkthelasttermshouldbe+2ab0lnaa+Lor2ab0lna+La
Commented by mrW1 last updated on 02/Jan/18
 [−2a ln (a+x)]_0 ^L =−2a[ln (a+L)−ln a]=−2a ln ((a+L)/a)=2a ln (a/(a+L))
[2aln(a+x)]0L=2a[ln(a+L)lna]=2alna+La=2alnaa+L
Commented by Tinkutara last updated on 03/Jan/18
Thank you very much Sir!
Answered by ajfour last updated on 02/Jan/18
F=∫_0 ^(  L) ((Gm(a_0 +b_0 x^2 )dx)/((x+a)^2 ))    =Gm∫_a ^(  a+L) (([a_0 +b_0 (t−a)^2 ]dt)/t^2 )   =Gm(−(a_0 /t))∣_a ^(a+L) +b_0 Gm∫_a ^(  a+L) [1−((2a)/t)+(a^2 /t^2 )]dt  =((Gma_0 L)/(a(a+L)))+b_0 Gm[L−2aln (((a+L)/a))+((a^2 L)/(a(a+L)))]  =Gm[((L(a_0 +a^2 b_0 ))/(a(a+L)))+b_0 L−2ab_0 ln (1+(L/a))] .
F=0LGm(a0+b0x2)dx(x+a)2=Gmaa+L[a0+b0(ta)2]dtt2=Gm(a0t)aa+L+b0Gmaa+L[12at+a2t2]dt=Gma0La(a+L)+b0Gm[L2aln(a+La)+a2La(a+L)]=Gm[L(a0+a2b0)a(a+L)+b0L2ab0ln(1+La)].
Commented by mrW1 last updated on 02/Jan/18
thanks for confirming the result!
thanksforconfirmingtheresult!
Commented by Tinkutara last updated on 03/Jan/18
Thank you very much Sir!

Leave a Reply

Your email address will not be published. Required fields are marked *