Question Number 27197 by mondodotto@gmail.com last updated on 03/Jan/18
Commented by prakash jain last updated on 03/Jan/18
$$\mathrm{I}\:\mathrm{think}\:\mathrm{there}\:\mathrm{is}\:\mathrm{typo} \\ $$$$\frac{\mathrm{3}}{\mathrm{5}},\frac{\mathrm{10}}{\mathrm{8}},\frac{\mathrm{16}}{\mathrm{18}},\frac{\mathrm{36}}{\mathrm{34}},\frac{\mathrm{68}}{\mathrm{70}},\frac{\mathrm{140}}{\mathrm{138}},\frac{\mathrm{276}}{\mathrm{268}} \\ $$$$\frac{\mathrm{Numerator}\:\mathrm{of}\:{n}^{{tb}} \:\mathrm{term}}{\mathrm{Deniminator}\:\mathrm{of}\:{n}^{{th}} \:\mathrm{term}} \\ $$$$=\frac{\mathrm{2}×\mathrm{Deniminator}\:\mathrm{of}\:{n}−\mathrm{1}^{{th}} \:\mathrm{term}}{\mathrm{Numerator}\:\mathrm{of}\:{n}−\mathrm{1}^{{tb}} \:\mathrm{term}+\mathrm{Deniminator}\:\mathrm{of}\:{n}−\mathrm{1}^{{th}} \:\mathrm{term}} \\ $$
Answered by prakash jain last updated on 05/Jan/18
$$\mathrm{Also}\:\mathrm{see}\:\mathrm{question}\:\mathrm{27300} \\ $$
Commented by mondodotto@gmail.com last updated on 05/Jan/18
$$\mathrm{ok}\:\mathrm{thanx} \\ $$