Menu Close

Question-27321




Question Number 27321 by 803jaideep@gmail.com last updated on 05/Jan/18
Commented by 803jaideep@gmail.com last updated on 05/Jan/18
plz solve it
$$\mathrm{plz}\:\mathrm{solve}\:\mathrm{it} \\ $$
Answered by mrW1 last updated on 05/Jan/18
x>0  ⇒∣x∣=x  log_(0.5)  x=∣x∣  ⇒((ln x)/(ln 0.5))=x  ((ln x)/(−ln 2))=x=e^(ln x)   (−ln x)e^(−ln x) =ln 2  ⇒−ln x=W(ln 2)  ⇒(1/x)=e^(W(ln 2)) =((ln 2)/(W(ln 2)))  ⇒x=((W(ln 2))/(ln 2))=((W(0.639))/(0.639))=((0.444436)/(0.639))=0.641
$${x}>\mathrm{0} \\ $$$$\Rightarrow\mid{x}\mid={x} \\ $$$$\mathrm{log}_{\mathrm{0}.\mathrm{5}} \:{x}=\mid{x}\mid \\ $$$$\Rightarrow\frac{\mathrm{ln}\:{x}}{\mathrm{ln}\:\mathrm{0}.\mathrm{5}}={x} \\ $$$$\frac{\mathrm{ln}\:{x}}{−\mathrm{ln}\:\mathrm{2}}={x}={e}^{\mathrm{ln}\:{x}} \\ $$$$\left(−\mathrm{ln}\:{x}\right){e}^{−\mathrm{ln}\:{x}} =\mathrm{ln}\:\mathrm{2} \\ $$$$\Rightarrow−\mathrm{ln}\:{x}={W}\left(\mathrm{ln}\:\mathrm{2}\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{{x}}={e}^{{W}\left(\mathrm{ln}\:\mathrm{2}\right)} =\frac{\mathrm{ln}\:\mathrm{2}}{{W}\left(\mathrm{ln}\:\mathrm{2}\right)} \\ $$$$\Rightarrow{x}=\frac{{W}\left(\mathrm{ln}\:\mathrm{2}\right)}{\mathrm{ln}\:\mathrm{2}}=\frac{{W}\left(\mathrm{0}.\mathrm{639}\right)}{\mathrm{0}.\mathrm{639}}=\frac{\mathrm{0}.\mathrm{444436}}{\mathrm{0}.\mathrm{639}}=\mathrm{0}.\mathrm{641} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *