Question Number 27332 by ajfour last updated on 05/Jan/18
Commented by ajfour last updated on 05/Jan/18
$${Find}\:{acceleration}\:{of}\:{blue}\:{and} \\ $$$${brown}\:{blocks}.\:{Friction}\:{coefficient} \\ $$$${is}\:\boldsymbol{\mu}\:{everywhere}\:\left({sufficiently}\:{less},\right. \\ $$$$\left.{and}\:{permits}\:{motion}\right). \\ $$
Answered by mrW1 last updated on 05/Jan/18
Commented by mrW1 last updated on 05/Jan/18
Commented by mrW1 last updated on 06/Jan/18
$$\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }=\mathrm{tan}\:\theta \\ $$$${N}_{\mathrm{2}} ={N}\:\mathrm{sin}\:\theta−{f}\:\mathrm{cos}\:\theta={N}\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right) \\ $$$${mg}−{f}_{\mathrm{2}} −{N}\:\mathrm{cos}\:\theta−{f}\:\mathrm{sin}\:\theta={ma}_{\mathrm{2}} \\ $$$${mg}−\mu{N}_{\mathrm{2}} −{N}\:\left(\mathrm{cos}\:\theta+\mu\:\mathrm{sin}\:\theta\right)={ma}_{\mathrm{2}} \\ $$$${mg}−\mu{N}\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)−{N}\:\left(\mathrm{cos}\:\theta+\mu\:\mathrm{sin}\:\theta\right)={ma}_{\mathrm{2}} \\ $$$${mg}−{N}\left(\mathrm{2}\mu\mathrm{sin}\:\theta−\mu^{\mathrm{2}} \:\mathrm{cos}\:\theta+\mathrm{cos}\:\theta\right)={ma}_{\mathrm{2}} \\ $$$$ \\ $$$${N}_{\mathrm{1}} ={mg}+{N}\:\mathrm{cos}\:\theta+{f}\:\mathrm{sin}\:\theta={mg}+{N}\left(\mathrm{cos}\:\theta+\mu\:\mathrm{sin}\:\theta\right) \\ $$$${N}\:\mathrm{sin}\:\theta−{f}\:\mathrm{cos}\:\theta−{f}_{\mathrm{1}} ={ma}_{\mathrm{1}} \\ $$$${N}\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)−\mu{N}_{\mathrm{1}} ={ma}_{\mathrm{1}} \\ $$$${N}\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)−\mu{mg}−\mu{N}\left(\mathrm{cos}\:\theta+\mu\:\mathrm{sin}\:\theta\right)={ma}_{\mathrm{1}} \\ $$$${N}\left(\mathrm{sin}\:\theta−\mu^{\mathrm{2}} \:\mathrm{sin}\:\theta−\mathrm{2}\mu\:\mathrm{cos}\:\theta\right)−\mu{mg}={ma}_{\mathrm{1}} \\ $$$$ \\ $$$$\frac{{mg}−{N}\left(\mathrm{2}\mu\mathrm{sin}\:\theta−\mu^{\mathrm{2}} \:\mathrm{cos}\:\theta+\mathrm{cos}\:\theta\right)}{{N}\left(\mathrm{sin}\:\theta−\mu^{\mathrm{2}} \:\mathrm{sin}\:\theta−\mathrm{2}\mu\:\mathrm{cos}\:\theta\right)−\mu{mg}}=\frac{{ma}_{\mathrm{2}} }{{ma}_{\mathrm{1}} }=\mathrm{tan}\:\theta=\frac{\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta} \\ $$$${mg}\:\mathrm{cos}\:\theta−{N}\left(\mathrm{2}\mu\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta−\mu^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{cos}^{\mathrm{2}} \:\theta\right)={N}\left(\mathrm{sin}^{\mathrm{2}} \:\theta−\mu^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta−\mathrm{2}\mu\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\right)−\mu{mg}\:\mathrm{sin}\:\theta \\ $$$${N}\left(\mathrm{2}\mu\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta−\mu^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{sin}^{\mathrm{2}} \:\theta−\mu^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta−\mathrm{2}\mu\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\right)={mg}\left(\mathrm{cos}\:\theta+\mu\mathrm{sin}\:\theta\right) \\ $$$${N}\left(\mathrm{1}−\mu^{\mathrm{2}} \right)={mg}\left(\mathrm{cos}\:\theta+\mu\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{N}=\frac{\left(\mathrm{cos}\:\theta+\mu\:\mathrm{sin}\:\theta\right){mg}}{\mathrm{1}−\mu^{\mathrm{2}} } \\ $$$$ \\ $$$${a}_{\mathrm{1}} =\frac{{N}\left(\mathrm{sin}\:\theta−\mu^{\mathrm{2}} \:\mathrm{sin}\:\theta−\mathrm{2}\mu\:\mathrm{cos}\:\theta\right)}{{m}}−\mu{g} \\ $$$${a}_{\mathrm{1}} =\frac{\left(\mathrm{cos}\:\theta+\mu\:\mathrm{sin}\:\theta\right)\left(\mathrm{sin}\:\theta−\mu^{\mathrm{2}} \:\mathrm{sin}\:\theta−\mathrm{2}\mu\:\mathrm{cos}\:\theta\right){g}}{\mathrm{1}−\mu^{\mathrm{2}} }−\mu{g} \\ $$$$\Rightarrow{a}_{\mathrm{1}} =\left[\left(\mathrm{cos}\:\theta+\mu\:\mathrm{sin}\:\theta\right)\left(\mathrm{sin}\:\theta−\frac{\mathrm{2}\mu}{\mathrm{1}−\mu^{\mathrm{2}} }\:\mathrm{cos}\:\theta\right)−\mu\right]{g} \\ $$$$ \\ $$$${a}_{\mathrm{2}} ={g}−\frac{{N}\left(\mathrm{2}\mu\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta−\mu^{\mathrm{2}} \:\mathrm{cos}\:\theta\right)}{{m}} \\ $$$${a}_{\mathrm{2}} ={g}−\frac{\left(\mathrm{cos}\:\theta+\mu\:\mathrm{sin}\:\theta\right)\left(\mathrm{2}\mu\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta−\mu^{\mathrm{2}} \:\mathrm{cos}\:\theta\right){g}}{\mathrm{1}−\mu^{\mathrm{2}} } \\ $$$$\Rightarrow{a}_{\mathrm{2}} =\left[\mathrm{1}−\left(\mathrm{cos}\:\theta+\mu\:\mathrm{sin}\:\theta\right)\left(\frac{\mathrm{2}\mu}{\mathrm{1}−\mu^{\mathrm{2}} }\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right)\right]{g} \\ $$
Commented by ajfour last updated on 05/Jan/18
$${Excellently}\:{presented}\:{and} \\ $$$${handled}\:{Sir}! \\ $$
Commented by mrW1 last updated on 06/Jan/18
$${Thank}\:{you}\:{sir}! \\ $$$${I}\:{have}\:{a}\:{problem}\:{with}\:{the}\:{result},\:{to} \\ $$$${be}\:{exact},\:{with}\:{the}\:{term}\:\frac{\mathrm{1}}{\mathrm{1}−\mu^{\mathrm{2}} }.\:{It} \\ $$$${means}\:\mu\neq\mathrm{1}.\:{But}\:{why}\:{is}\:{it}\:{so}?\:{What} \\ $$$${happens}\:{if}\:\mu=\mathrm{1}? \\ $$