Menu Close

Question-27771




Question Number 27771 by ajfour last updated on 14/Jan/18
Commented by ajfour last updated on 14/Jan/18
If an equilateral triangle of  edge length a is rotated about  about its vertex A by an angle θ  find the area common in its  new and previous positions.  (the pink area).
IfanequilateraltriangleofedgelengthaisrotatedaboutaboutitsvertexAbyanangleθfindtheareacommoninitsnewandpreviouspositions.(thepinkarea).
Answered by mrW2 last updated on 14/Jan/18
Commented by mrW2 last updated on 14/Jan/18
2α+θ=(π/3)  ⇒α=(π/6)−(θ/2)  ((BP)/(sin θ))=((AB)/(sin (π−(π/3)−θ)))=(a/(sin ((π/3)+θ)))  ⇒BP=((sin θ)/(sin ((π/3)+θ)))×a  similarly  ((CM)/(sin α))=(a/(sin ((π/3)+α)))  ⇒CM=((sin α)/(sin ((π/3)+α)))×a=((sin ((π/6)−(θ/2)))/(sin ((π/2)−(θ/2))))×a=((sin ((π/6)−(θ/2)))/(cos (θ/2)))×a    PM=a−((sin θ)/(sin ((π/3)+θ)))×a−((sin ((π/6)−(θ/2)))/(cos (θ/2)))×a  =a[1−((sin θ)/(((√3)/2) cos θ+(1/2) sin θ))−(((1/2) cos (θ/2)−((√3)/2) sin (θ/2))/(cos (θ/2)))]  =a[(1/2)−((2 tan θ)/( (√3)+tan θ))+((√3)/2) tan (θ/2)]    A_(ΔAPM) =(1/2)×PM×(((√3) a)/2)=(((√3) a^2 )/4)[(1/2)−((2 tan θ)/( (√3)+tan θ))+((√3)/2) tan (θ/2)]    ⇒A_(APMQ) =2A_(ΔAPM) =(((√3) a^2 )/4)[1−((4 tan θ)/( (√3)+tan θ))+(√3) tan (θ/2)]
2α+θ=π3α=π6θ2BPsinθ=ABsin(ππ3θ)=asin(π3+θ)BP=sinθsin(π3+θ)×asimilarlyCMsinα=asin(π3+α)CM=sinαsin(π3+α)×a=sin(π6θ2)sin(π2θ2)×a=sin(π6θ2)cosθ2×aPM=asinθsin(π3+θ)×asin(π6θ2)cosθ2×a=a[1sinθ32cosθ+12sinθ12cosθ232sinθ2cosθ2]=a[122tanθ3+tanθ+32tanθ2]AΔAPM=12×PM×3a2=3a24[122tanθ3+tanθ+32tanθ2]AAPMQ=2AΔAPM=3a24[14tanθ3+tanθ+3tanθ2]
Commented by ajfour last updated on 15/Jan/18
thank you sir. please view my  way if you haven′t.
thankyousir.pleaseviewmywayifyouhavent.
Commented by mrW2 last updated on 16/Jan/18
Your way is very nice too. I didn′t come  to it.
Yourwayisverynicetoo.Ididntcometoit.
Answered by ajfour last updated on 14/Jan/18
Commented by ajfour last updated on 14/Jan/18
eq. of BP :  y=−(√3)(x−a)  eq. of AP :   y=xtan θ  eq. of AM :  y=xtan (θ+α)                              =xtan ((π/6)+(θ/2))  y_P =−(√3)(x_P −a)=x_P tan θ  ⇒ y_P =((a(√3)tan θ)/( (√3)+tan θ))  similarly y_M =((a(√3)tan ((π/6)+(θ/2)))/( (√3)+tan ((π/6)+(θ/2))))      =((a(√3))/( (√3)(((1−((tan (θ/2))/( (√3))))/((1/( (√3)))+tan (θ/2))))+1))  =((a(√3))/( (√3)[(((√3)−tan (θ/2))/(1+(√3)tan (θ/2)))]+1))  =((a(√3)[1+(√3)tan (θ/2)])/4)  reqd. area=2×(a/2)(y_M −y_P )  =((a^2 (√3))/4)[1+(√3)tan (θ/2)−((4tan θ)/( (√3)+tan θ))] .
eq.ofBP:y=3(xa)eq.ofAP:y=xtanθeq.ofAM:y=xtan(θ+α)=xtan(π6+θ2)yP=3(xPa)=xPtanθyP=a3tanθ3+tanθsimilarlyyM=a3tan(π6+θ2)3+tan(π6+θ2)=a33(1tan(θ/2)313+tanθ2)+1=a33[3tan(θ/2)1+3tan(θ/2)]+1=a3[1+3tan(θ/2)]4reqd.area=2×a2(yMyP)=a234[1+3tanθ24tanθ3+tanθ].

Leave a Reply

Your email address will not be published. Required fields are marked *