Question Number 28512 by ajfour last updated on 26/Jan/18
Commented by ajfour last updated on 26/Jan/18
$${If}\:{eq}.\:{of}\:{line}\:{AB}\:{is}\:\boldsymbol{{y}}=\boldsymbol{{mx}}+\boldsymbol{{c}} \\ $$$${and}\:{that}\:{of}\:{ellipse}\:{is}\:\:\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{a}}^{\mathrm{2}} }+\frac{\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} }=\mathrm{1}\:, \\ $$$${find}\:{eq}.\:{of}\:{circle}\:{with}\:{AB}\:{as} \\ $$$${diameter}. \\ $$
Answered by mrW2 last updated on 26/Jan/18
$${y}={mx}+{c} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({mx}+{c}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} {mcx}+{a}^{\mathrm{2}} \left({c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{−{a}^{\mathrm{2}} {mc}\pm\sqrt{{a}^{\mathrm{4}} {m}^{\mathrm{2}} {c}^{\mathrm{2}} −\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){a}^{\mathrm{2}} \left({c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}}{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{x}_{{A},{B}} =\frac{−{a}^{\mathrm{2}} {mc}\pm{ab}\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }}{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{x}_{{C}} =\frac{{x}_{{A}} +{x}_{{B}} }{\mathrm{2}}=−\frac{{a}^{\mathrm{2}} {mc}}{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{y}_{{C}} =\frac{{b}^{\mathrm{2}} {c}}{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{2}{R}=\mid{x}_{{A}} −{x}_{{B}} \mid\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }=\frac{\mathrm{2}{ab}\sqrt{\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left(\mathrm{1}+{m}^{\mathrm{2}} \right)}}{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{R}=\frac{{ab}\sqrt{\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left(\mathrm{1}+{m}^{\mathrm{2}} \right)}}{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$ \\ $$$${Eqn}.\:{of}\:{circle}: \\ $$$$\left({x}−{x}_{{C}} \right)^{\mathrm{2}} +\left({y}−{y}_{{C}} \right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow\left({x}+\frac{{a}^{\mathrm{2}} {mc}}{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)^{\mathrm{2}} +\left({y}−\frac{{b}^{\mathrm{2}} {c}}{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left(\mathrm{1}+{m}^{\mathrm{2}} \right)}{\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow\left[\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){x}+{a}^{\mathrm{2}} {mc}\right]^{\mathrm{2}} +\left[\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){y}−{b}^{\mathrm{2}} {c}\right]^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left(\mathrm{1}+{m}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{2}\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){a}^{\mathrm{2}} {mcx}+{a}^{\mathrm{4}} {m}^{\mathrm{2}} {c}^{\mathrm{2}} −\mathrm{2}\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){b}^{\mathrm{2}} {cy}+{b}^{\mathrm{4}} {c}^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left(\mathrm{1}+{m}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} {m}^{\mathrm{2}} \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{2}\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} {mcx}−{b}^{\mathrm{2}} {cy}\right)+\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){a}^{\mathrm{2}} {c}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left(\mathrm{1}+{m}^{\mathrm{2}} \right)+\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){b}^{\mathrm{2}} {c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{2}{a}^{\mathrm{2}} {mcx}−\mathrm{2}{b}^{\mathrm{2}} {cy}+\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left(\mathrm{1}+{m}^{\mathrm{2}} \right)=\mathrm{0} \\ $$
Commented by ajfour last updated on 27/Jan/18
$${Thanks}\:{sir}.\:{Stay}\:{blessed}\:{Sir}. \\ $$