Menu Close

Question-28518




Question Number 28518 by beh.i83417@gmail.com last updated on 26/Jan/18
Commented by beh.i83417@gmail.com last updated on 26/Jan/18
all radii=1, ab=?  find radius of a circle(or circles) that  tangents to this 3 circles.
$$\boldsymbol{{all}}\:\boldsymbol{{radii}}=\mathrm{1},\:\boldsymbol{{ab}}=? \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{radius}}\:\boldsymbol{{of}}\:\boldsymbol{{a}}\:\boldsymbol{{circle}}\left({or}\:{circles}\right)\:\boldsymbol{{that}} \\ $$$$\boldsymbol{{tangents}}\:\boldsymbol{{to}}\:\boldsymbol{{this}}\:\mathrm{3}\:\boldsymbol{{circles}}. \\ $$
Commented by mrW2 last updated on 26/Jan/18
ab=r=1
$${ab}={r}=\mathrm{1} \\ $$
Answered by mrW2 last updated on 27/Jan/18
Commented by mrW2 last updated on 27/Jan/18
big circle:  R_1 =r+(2/3)×(√3)r=(1+((2(√3))/3))r≈2.15    small circle:  R_2 =(2/3)×(√3)r−1=(((2(√3))/3)−1)r≈0.15
$${big}\:{circle}: \\ $$$${R}_{\mathrm{1}} ={r}+\frac{\mathrm{2}}{\mathrm{3}}×\sqrt{\mathrm{3}}{r}=\left(\mathrm{1}+\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\right){r}\approx\mathrm{2}.\mathrm{15} \\ $$$$ \\ $$$${small}\:{circle}: \\ $$$${R}_{\mathrm{2}} =\frac{\mathrm{2}}{\mathrm{3}}×\sqrt{\mathrm{3}}{r}−\mathrm{1}=\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}−\mathrm{1}\right){r}\approx\mathrm{0}.\mathrm{15} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *