Question Number 28574 by ajfour last updated on 27/Jan/18

Commented by ajfour last updated on 27/Jan/18

Commented by ajfour last updated on 29/Jan/18

Answered by mrW2 last updated on 29/Jan/18

Commented by ajfour last updated on 29/Jan/18

Commented by mrW2 last updated on 29/Jan/18
![Eqn. of AB: x=(a/2) with a=(√2)r Eqn. of CD (=AB rotated by θ) x cos θ+y sin θ=(a/2) (a/2) cos θ+y_E sin θ=(a/2) ⇒y_E =((a(1−cos θ))/(2 sin θ)) x_F cos θ+(a/2) sin θ=(a/2) ⇒x_F =((a(1−sin θ))/(2 cos θ)) A_(ΔBEF) =(1/2)[(a/2)−((a(1−sin θ))/(2 cos θ))][(a/2)−((a(1−cos θ))/(2 sin θ))] A_(ΔBEF) =(a^2 /8)[((cos θ−1+sin θ)/(cos θ))][((sin θ−1+cos θ)/( sin θ))] A_(ΔBEF) =(a^2 /8)×(((cos θ+sin θ−1)^2 )/(sin θ cos θ)) A_(ΔBEF) =(a^2 /4)[1−((cos θ+sin θ−1)/(sin θ cos θ))] A_(Green) =4A_(ΔBEF) A_(Green) (θ)=a^2 [1−((cos θ+sin θ−1)/(sin θ cos θ))] A_(Green) (θ)=2r^2 [1−((cos θ+sin θ−1)/(sin θ cos θ))] with 0≤θ≤(π/2) A_(Green) ((π/2)+θ)=A_(Green) (θ) f(θ)=1−((cos θ+sin θ−1)/(sin θ cos θ)) f(θ)=1+((2[1−(√2) sin (θ+(π/4))])/(sin 2θ)) max. f(θ)=1+((2[1−(√2)])/1)=3−2(√2)≈0.17 at θ=(π/4) ⇒max.A_(Green) =(3−2(√2))a^2 ≈0.17a^2 ≈0.34r^2](https://www.tinkutara.com/question/Q28742.png)