Menu Close

Question-28574




Question Number 28574 by ajfour last updated on 27/Jan/18
Commented by ajfour last updated on 27/Jan/18
Find entire green area in terms  of r, 𝛉 . The two frames are  square frames with common  centre. Find also the maximum  of the area for constant r.
Findentiregreenareaintermsofr,θ.Thetwoframesaresquareframeswithcommoncentre.Findalsothemaximumoftheareaforconstantr.
Commented by ajfour last updated on 29/Jan/18
mrW2 Sir, would you solve this?
mrW2Sir,wouldyousolvethis?
Answered by mrW2 last updated on 29/Jan/18
Commented by ajfour last updated on 29/Jan/18
thank you enormously Sir!  extremely satisfactory!
thankyouenormouslySir!extremelysatisfactory!
Commented by mrW2 last updated on 29/Jan/18
Eqn. of AB:  x=(a/2) with a=(√2)r  Eqn. of CD (=AB rotated by θ)  x cos θ+y sin θ=(a/2)    (a/2) cos θ+y_E  sin θ=(a/2)  ⇒y_E =((a(1−cos θ))/(2 sin θ))  x_F  cos θ+(a/2) sin θ=(a/2)  ⇒x_F =((a(1−sin θ))/(2 cos θ))    A_(ΔBEF) =(1/2)[(a/2)−((a(1−sin θ))/(2 cos θ))][(a/2)−((a(1−cos θ))/(2 sin θ))]  A_(ΔBEF) =(a^2 /8)[((cos θ−1+sin θ)/(cos θ))][((sin θ−1+cos θ)/( sin θ))]  A_(ΔBEF) =(a^2 /8)×(((cos θ+sin θ−1)^2 )/(sin θ cos θ))  A_(ΔBEF) =(a^2 /4)[1−((cos θ+sin θ−1)/(sin θ cos θ))]  A_(Green) =4A_(ΔBEF)   A_(Green) (θ)=a^2 [1−((cos θ+sin θ−1)/(sin θ cos θ))]  A_(Green) (θ)=2r^2 [1−((cos θ+sin θ−1)/(sin θ cos θ))]  with 0≤θ≤(π/2)  A_(Green) ((π/2)+θ)=A_(Green) (θ)    f(θ)=1−((cos θ+sin θ−1)/(sin θ cos θ))  f(θ)=1+((2[1−(√2) sin (θ+(π/4))])/(sin 2θ))  max. f(θ)=1+((2[1−(√2)])/1)=3−2(√2)≈0.17  at θ=(π/4)  ⇒max.A_(Green) =(3−2(√2))a^2 ≈0.17a^2 ≈0.34r^2
Eqn.ofAB:x=a2witha=2rEqn.ofCD(=ABrotatedbyθ)xcosθ+ysinθ=a2a2cosθ+yEsinθ=a2yE=a(1cosθ)2sinθxFcosθ+a2sinθ=a2xF=a(1sinθ)2cosθAΔBEF=12[a2a(1sinθ)2cosθ][a2a(1cosθ)2sinθ]AΔBEF=a28[cosθ1+sinθcosθ][sinθ1+cosθsinθ]AΔBEF=a28×(cosθ+sinθ1)2sinθcosθAΔBEF=a24[1cosθ+sinθ1sinθcosθ]AGreen=4AΔBEFAGreen(θ)=a2[1cosθ+sinθ1sinθcosθ]AGreen(θ)=2r2[1cosθ+sinθ1sinθcosθ]with0θπ2AGreen(π2+θ)=AGreen(θ)f(θ)=1cosθ+sinθ1sinθcosθf(θ)=1+2[12sin(θ+π4)]sin2θmax.f(θ)=1+2[12]1=3220.17atθ=π4max.AGreen=(322)a20.17a20.34r2

Leave a Reply

Your email address will not be published. Required fields are marked *