Menu Close

Question-28858




Question Number 28858 by amit96 last updated on 31/Jan/18
Commented by abdo imad last updated on 31/Jan/18
we have f(x)=x^3 +x and g(x)=x^3 −x⇒  f^′ (x)=3x^2 +1 and g^′ (x)=3x^2 −1 and  (gof^(−1) )^′ (2)=g^′ (f^(−1) (2)).f^(−1^′ ) (2) but f^(−1) (2)=t ⇔f(t)=2  ⇔t^3 +t −2=0  ⇔(t−1)(t^2 +t+2)=0 ⇔t=1 because  the polynomial t^2 +t+2 haven t any roots ( Δ<0) so  f^(−1) (2)=1  and (f^(−1) )^′ (2) = (1/(f^′ (f^(−1) (2))))= (1/(f^′ (1)))= (1/4)  g^′ (f^(−1) (2))=g^′ (1)=2  for that (gof^(−1) )^′ (2)=2×(1/4)= (1/2)  (B)
$${we}\:{have}\:{f}\left({x}\right)={x}^{\mathrm{3}} +{x}\:{and}\:{g}\left({x}\right)={x}^{\mathrm{3}} −{x}\Rightarrow \\ $$$${f}^{'} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\:{and}\:{g}^{'} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\:{and} \\ $$$$\left({gof}^{−\mathrm{1}} \right)^{'} \left(\mathrm{2}\right)={g}^{'} \left({f}^{−\mathrm{1}} \left(\mathrm{2}\right)\right).{f}^{−\mathrm{1}^{'} } \left(\mathrm{2}\right)\:{but}\:{f}^{−\mathrm{1}} \left(\mathrm{2}\right)={t}\:\Leftrightarrow{f}\left({t}\right)=\mathrm{2} \\ $$$$\Leftrightarrow{t}^{\mathrm{3}} +{t}\:−\mathrm{2}=\mathrm{0}\:\:\Leftrightarrow\left({t}−\mathrm{1}\right)\left({t}^{\mathrm{2}} +{t}+\mathrm{2}\right)=\mathrm{0}\:\Leftrightarrow{t}=\mathrm{1}\:{because} \\ $$$${the}\:{polynomial}\:{t}^{\mathrm{2}} +{t}+\mathrm{2}\:{haven}\:{t}\:{any}\:{roots}\:\left(\:\Delta<\mathrm{0}\right)\:{so} \\ $$$${f}^{−\mathrm{1}} \left(\mathrm{2}\right)=\mathrm{1}\:\:{and}\:\left({f}^{−\mathrm{1}} \right)^{'} \left(\mathrm{2}\right)\:=\:\frac{\mathrm{1}}{{f}^{'} \left({f}^{−\mathrm{1}} \left(\mathrm{2}\right)\right)}=\:\frac{\mathrm{1}}{{f}^{'} \left(\mathrm{1}\right)}=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${g}^{'} \left({f}^{−\mathrm{1}} \left(\mathrm{2}\right)\right)={g}^{'} \left(\mathrm{1}\right)=\mathrm{2}\:\:{for}\:{that}\:\left({gof}^{−\mathrm{1}} \right)^{'} \left(\mathrm{2}\right)=\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\left({B}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *