Question Number 29093 by ajfour last updated on 04/Feb/18
Commented by ajfour last updated on 04/Feb/18
$${Two}\:{rods}\:{mutually}\:{joined}\:{at} \\ $$$${hinge}\:{H},\:{lie}\:{on}\:{a}\:{frictionless} \\ $$$${horizontal}\:{surface},\:{are}\:{hit}\:{by} \\ $$$${two}\:{point}\:{masses}\:{inelastically}. \\ $$$$\left({a}\right)\:{Find}\:{angular}\:{velocity}\:{of}\:{each} \\ $$$${rod}\:{just}\:{after}\:{collision}. \\ $$$$\left({b}\right)\:{Find}\:{also}\:{the}\:{velocity}\:{of}\:{hinge} \\ $$$${just}\:{after}\:{collision}. \\ $$$${Assume}\:{hinge}\:{H}\:{is}\:{frictionless} \\ $$$${and}\:{free}\:{to}\:{move}. \\ $$
Answered by mrW2 last updated on 04/Feb/18
$${e}={coefficient}\:{of}\:{restitution} \\ $$$${v}={velocity}\:{of}\:{hinge}\:{after}\:{hit}\:\left(\uparrow\right) \\ $$$$\omega={angular}\:{speed}\:{of}\:{rods}\:\left(\curvearrowright\curvearrowleft\right) \\ $$$${u}_{\mathrm{1}} ={velocity}\:{of}\:{mass}\:{after}\:{hit} \\ $$$${u}_{\mathrm{0}} ={velocity}\:{of}\:{com}\:{of}\:{rod} \\ $$$${u}_{\mathrm{0}} ={v}+\frac{\omega{l}}{\mathrm{2}} \\ $$$${u}_{\mathrm{2}} ={velocity}\:{of}\:{free}\:{end}\:{of}\:{rod} \\ $$$${v}_{\mathrm{2}} ={v}+\omega{l} \\ $$$$ \\ $$$${v}_{\mathrm{2}} −{u}_{\mathrm{1}} ={eu} \\ $$$$\Rightarrow{v}+\omega{l}−{u}_{\mathrm{1}} ={eu} \\ $$$$\Rightarrow{v}_{\mathrm{1}} ={v}+\omega{l}−{eu} \\ $$$$ \\ $$$${Mu}={Mu}_{\mathrm{1}} +{mu}_{\mathrm{0}} \\ $$$$\Rightarrow{Mu}={M}\left({v}+\omega{l}−{eu}\right)+{m}\left({v}+\frac{\omega{l}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\left({M}+{m}\right){v}+\left({M}+\frac{{m}}{\mathrm{2}}\right)\omega{l}={M}\left(\mathrm{1}+{e}\right){u}\:\:…\left({i}\right) \\ $$$$ \\ $$$${Mul}={Mu}_{\mathrm{1}} {l}+\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}\omega+\frac{{ml}}{\mathrm{2}}{v}_{\mathrm{0}} \\ $$$${Mul}={Mu}_{\mathrm{1}} {l}+\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}\omega+\frac{{ml}}{\mathrm{2}}\left({v}+\frac{\omega{l}}{\mathrm{2}}\right)\: \\ $$$${Mul}={Mu}_{\mathrm{1}} {l}+\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\omega+\frac{{mvl}}{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow{Mu}={M}\left({v}+{wl}−{eu}\right)+\frac{{ml}}{\mathrm{3}}\omega+\frac{{mv}}{\mathrm{2}} \\ $$$$\Rightarrow\left({M}+\frac{{m}}{\mathrm{2}}\right){v}+\left({M}+\frac{{m}}{\mathrm{3}}\right)\omega{l}={M}\left(\mathrm{1}+{e}\right){u}\:\:\:…\left({ii}\right) \\ $$$$ \\ $$$$\Rightarrow\left[\left({M}+{m}\right)\left({M}+\frac{{m}}{\mathrm{3}}\right)−\left({M}+\frac{{m}}{\mathrm{2}}\right)\left({M}+\frac{{m}}{\mathrm{2}}\right)\right]{v}=\left[\left({M}+\frac{{m}}{\mathrm{3}}\right)−\left({M}+\frac{{m}}{\mathrm{2}}\right)\right]{M}\left(\mathrm{1}+{e}\right){u} \\ $$$$\Rightarrow{v}=−\frac{\mathrm{2}{M}\left(\mathrm{1}+{e}\right){u}}{\mathrm{4}{M}+{m}}=−\frac{\mathrm{2}\left(\mathrm{1}+{e}\right){u}}{\mathrm{5}} \\ $$$$ \\ $$$$\Rightarrow\left[\left({M}+{m}\right)\left({M}+\frac{{m}}{\mathrm{3}}\right)−\left({M}+\frac{{m}}{\mathrm{2}}\right)\left({M}+\frac{{m}}{\mathrm{2}}\right)\right]\omega{l}=\left[\left({M}+{m}\right)−\left({M}+\frac{{m}}{\mathrm{2}}\right)\right]{M}\left(\mathrm{1}+{e}\right){u} \\ $$$$\overset{} {\Rightarrow}\omega=\frac{\mathrm{6}{M}\left(\mathrm{1}+{e}\right){u}}{\left(\mathrm{4}{M}+{m}\right){l}}=\frac{\mathrm{6}\left(\mathrm{1}+{e}\right){u}}{\mathrm{5}{l}} \\ $$
Commented by ajfour last updated on 04/Feb/18
$${you}\:{have}\:{proved}\:{it}\:{generally}\:{enough} \\ $$$${Sir},\:{i}'{d}\:{meant}\:{completely}\:{inelastic} \\ $$$${collision}.\:{Thank}\:{you}\:{so}\:{much}\:{Sir}! \\ $$