Menu Close

Question-29134




Question Number 29134 by Tinkutara last updated on 04/Feb/18
Commented by ajfour last updated on 04/Feb/18
Commented by ajfour last updated on 04/Feb/18
let PQ=r_1   , PS=r_2   ,  PR=r_3       (1/r_2 )=((r_1 +r_3 )/(2r_1 r_3 ))       ...(i)  eq. of variable line through P :         y=β+rsin θ  ,  x=α+rcos θ  Q(at_1 ^2 , 2at_1 )   ,  R(at_2 ^2 , 2at_2 )  Q and R lie on line and parabola  ⇒  2at=β+rsin θ          at^2 =α+rcos θ  (β+rsin θ)^2 =4a(α+rcos θ)  ⇒ r^2 sin^2 θ+(2βsin θ−4acos θ)r+β^2 −4aα=0  r_1 , r_3  are roots of this eq.  ⇒   ((2r_1 r_3 )/(r_1 +r_3 ))=((2(β^2 −4aα))/(4acos θ−2βsin θ))  using this in (i)         (1/r_2 )= ((4acos θ−2βsin θ)/(2(β^2 −4aα)))       ...(ii)  or   β^2 −4aα = 2ar_2 cos θ−βr_2 sin θ  but S(h,k) lies on line , so          h=α+r_2 cos θ  ,  k=β+r_2 sin θ  using this in (ii)     𝛃^( 2) −4a𝛂 = 2a(h−𝛂)−𝛃(k−𝛃)  ⇒  2a(h+α)= kβ  so replacing (h,k) by (x,y)        y= (((2a)/𝛃))x+((2a𝛂)/𝛃) .  slope independent of 𝛂 .
letPQ=r1,PS=r2,PR=r31r2=r1+r32r1r3(i)eq.ofvariablelinethroughP:y=β+rsinθ,x=α+rcosθQ(at12,2at1),R(at22,2at2)QandRlieonlineandparabola2at=β+rsinθat2=α+rcosθ(β+rsinθ)2=4a(α+rcosθ)r2sin2θ+(2βsinθ4acosθ)r+β24aα=0r1,r3arerootsofthiseq.2r1r3r1+r3=2(β24aα)4acosθ2βsinθusingthisin(i)1r2=4acosθ2βsinθ2(β24aα)(ii)orβ24aα=2ar2cosθβr2sinθbutS(h,k)liesonline,soh=α+r2cosθ,k=β+r2sinθusingthisin(ii)\boldsymbolβ24\boldsymbolaα=2\boldsymbola(\boldsymbolh\boldsymbolα)\boldsymbolβ(\boldsymbolk\boldsymbolβ)2a(h+α)=kβsoreplacing(h,k)by(x,y)\boldsymboly=(2\boldsymbola\boldsymbolβ)x+2\boldsymbolaα\boldsymbolβ.\boldsymbolslope\boldsymbolindependent\boldsymbolof\boldsymbolα.
Commented by Tinkutara last updated on 05/Feb/18
Wonderful Sir! ���� Thanks! ��

Leave a Reply

Your email address will not be published. Required fields are marked *