Question Number 29198 by ajfour last updated on 05/Feb/18
Commented by ajfour last updated on 05/Feb/18
$${uniform}\:{rod}. \\ $$
Answered by mrW2 last updated on 05/Feb/18
Commented by mrW2 last updated on 05/Feb/18
$${N}_{\mathrm{1}} ={f}_{\mathrm{2}} \\ $$$${N}_{\mathrm{2}} ={mg}−{f}_{\mathrm{1}} \\ $$$${N}_{\mathrm{2}} {l}\:\mathrm{cos}\:\theta−{mg}\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta−{N}_{\mathrm{1}} {l}\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$$ \\ $$$${case}\:\mathrm{1}:\:{f}_{\mathrm{1}} =\mu_{\mathrm{1}} {N}_{\mathrm{1}} ,\:{f}_{\mathrm{2}} \leqslant\mu_{\mathrm{2}} {N}_{\mathrm{2}} =\mu_{\mathrm{2}} \left({mg}−\mu_{\mathrm{1}} {f}_{\mathrm{2}} \right) \\ $$$${f}_{\mathrm{2}} \leqslant\frac{\mu_{\mathrm{2}} {mg}}{\mathrm{1}+\mu_{\mathrm{1}} \mu_{\mathrm{2}} } \\ $$$$\left({mg}−\mu_{\mathrm{1}} {f}_{\mathrm{2}} \right){l}\:\mathrm{cos}\:\theta−{mg}\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta−{f}_{\mathrm{2}} {l}\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$${f}_{\mathrm{2}} \left(\mu_{\mathrm{1}} +\mathrm{tan}\:\theta\right)=\frac{{mg}}{\mathrm{2}} \\ $$$$\Rightarrow{f}_{\mathrm{2}} =\frac{{mg}}{\mathrm{2}\left(\mu_{\mathrm{1}} +\mathrm{tan}\:\theta\right)}\leqslant\frac{\mu_{\mathrm{2}} {mg}}{\mathrm{1}+\mu_{\mathrm{1}} \mu_{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mu_{\mathrm{1}} +\mathrm{tan}\:\theta}\leqslant\frac{\mathrm{2}\mu_{\mathrm{2}} }{\mathrm{1}+\mu_{\mathrm{1}} \mu_{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{tan}\:\theta\geqslant\frac{\mathrm{1}−\mu_{\mathrm{1}} \mu_{\mathrm{2}} }{\mathrm{2}\mu_{\mathrm{2}} } \\ $$$$\Rightarrow\theta\geqslant\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}−\mu_{\mathrm{1}} \mu_{\mathrm{2}} }{\mathrm{2}\mu_{\mathrm{2}} }\right) \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:{f}_{\mathrm{2}} =\mu_{\mathrm{2}} {N}_{\mathrm{2}} ,\:{f}_{\mathrm{1}} \leqslant\mu_{\mathrm{1}} {N}_{\mathrm{1}} =\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({mg}−{f}_{\mathrm{1}} \right) \\ $$$$\Rightarrow{f}_{\mathrm{1}} \leqslant\frac{\mu_{\mathrm{1}} \mu_{\mathrm{2}} {mg}}{\mathrm{1}+\mu_{\mathrm{1}} \mu_{\mathrm{2}} } \\ $$$$\left({mg}−{f}_{\mathrm{1}} \right){l}\:\mathrm{cos}\:\theta−{mg}\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta−\mu_{\mathrm{2}} \left({mg}−{f}_{\mathrm{1}} \right){l}\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$$−{f}_{\mathrm{1}} \mathrm{cos}\:\theta+\frac{{mg}}{\mathrm{2}}\mathrm{cos}\:\theta−\mu_{\mathrm{2}} {mg}\mathrm{sin}\:\theta+\mu_{\mathrm{2}} {f}_{\mathrm{1}} \mathrm{sin}\:\theta=\mathrm{0} \\ $$$$\left(\mathrm{1}−\mu_{\mathrm{2}} \mathrm{tan}\:\theta\right){f}_{\mathrm{1}} =\frac{{mg}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{2}\mu_{\mathrm{2}} \mathrm{tan}\:\theta\right) \\ $$$$\Rightarrow{f}_{\mathrm{1}} =\frac{{mg}\left(\mathrm{1}−\mathrm{2}\mu_{\mathrm{2}} \mathrm{tan}\:\theta\right)}{\mathrm{2}\left(\mathrm{1}−\mu_{\mathrm{2}} \mathrm{tan}\:\theta\right)} \\ $$$$\Rightarrow{f}_{\mathrm{1}} =\frac{{mg}\left(−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}−\mu_{\mathrm{2}} \mathrm{tan}\:\theta\right)}{\mathrm{1}−\mu_{\mathrm{2}} \mathrm{tan}\:\theta} \\ $$$$\Rightarrow{f}_{\mathrm{1}} ={mg}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−\mu_{\mathrm{2}} \mathrm{tan}\:\theta}\right]\leqslant\frac{{mg}\mu_{\mathrm{1}} \mu_{\mathrm{2}} }{\mathrm{1}+\mu_{\mathrm{1}} \mu_{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+\mu_{\mathrm{1}} \mu_{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{1}−\mu_{\mathrm{2}} \mathrm{tan}\:\theta} \\ $$$$\mathrm{tan}\:\theta\geqslant−\mu_{\mathrm{1}} \:\Rightarrow{always}\:{true} \\ $$$$ \\ $$$$\Rightarrow{the}\:{rod}\:{slips}\:{when}\:\theta\leqslant\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}−\mu_{\mathrm{1}} \mu_{\mathrm{2}} }{\mathrm{2}\mu_{\mathrm{2}} }\right) \\ $$
Commented by ajfour last updated on 05/Feb/18
$${Great}!\:{you}\:{have}\:{been}\:{too}\:{careful} \\ $$$${Sir},\:{i}\:{simply}\:{took}\:{friction}\:{at} \\ $$$${each}\:{surface}\:{at}\:{its}\:{maximum}, \\ $$$${shall}\:{try}\:{to}\:{understand}\:{your} \\ $$$${carefulness}\:{Sir}. \\ $$
Commented by mrW2 last updated on 05/Feb/18
$${Your}\:{right}.\:{There}\:{is}\:{no}\:{need}\:{to}\:{be} \\ $$$${such}\:{careful}.\:{If}\:{one}\:{end}\:{slips},\:{the} \\ $$$${other}\:{end}\:{slips}\:{too}.\:{We}\:{can}\:{put}\:{max}. \\ $$$${friction}\:{on}\:{both}\:{ends}\:{at}\:{the}\:{same}\:{time}. \\ $$