Question Number 29322 by ajfour last updated on 07/Feb/18
Commented by ajfour last updated on 07/Feb/18
$${Find}\:{acceleration}\:{of}\:{sphere}\:{as} \\ $$$${a}\:{function}\:{of}\:{angle}\:\theta. \\ $$$${System}\:{is}\:{released}\:{at}\:\theta=\:\theta_{\mathrm{0}} \:\left(<\mathrm{90}°\right)\:; \\ $$$$\left({All}\:{surfaces}\:{are}\:{frictionless}\right). \\ $$
Commented by ajfour last updated on 07/Feb/18
$${Please}\:{solve}\:{or}\:{check}\:{my}\:{solution}\: \\ $$$${mrW}\:\:{Sir}. \\ $$
Commented by ajfour last updated on 07/Feb/18
Commented by ajfour last updated on 07/Feb/18
$${x}={R}\mathrm{cot}\:\frac{\theta}{\mathrm{2}} \\ $$$${v}=−\frac{\omega{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\boldsymbol{{v}}^{\mathrm{2}} =\frac{\boldsymbol{\omega}^{\mathrm{2}} \boldsymbol{{R}}^{\mathrm{2}} }{\mathrm{4}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}\:\:\:….\left({i}\right) \\ $$$${a}=\frac{{dv}}{{dt}}=\:−\frac{\alpha{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:+\frac{\omega^{\mathrm{2}} {R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}\:\:\:\:\:…\left({ii}\right) \\ $$$${N}\mathrm{sin}\:\theta\:=\:{ma}\:\:\:\:….\left({iii}\right) \\ $$$${NR}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}−\frac{{MgL}\mathrm{cos}\:\theta}{\mathrm{2}}\:=\left(\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\right)\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\Rightarrow\:\alpha=\frac{\mathrm{3}}{{ML}^{\mathrm{2}} }\left(\frac{{maR}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\theta}−\frac{{MgL}\mathrm{cos}\:\theta}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\left({iv}\right) \\ $$$$\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\right)\omega^{\mathrm{2}} \\ $$$${using}\:\left({i}\right): \\ $$$$\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)=\frac{{m}\omega^{\mathrm{2}} {R}^{\mathrm{2}} }{\mathrm{8}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{{ML}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\omega^{\mathrm{2}} =\frac{\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)}{\frac{{ML}^{\mathrm{2}} }{\mathrm{6}}+\frac{{mR}^{\mathrm{2}} }{\mathrm{8}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}}\:\:\:….\left({A}\right) \\ $$$${Using}\:\:{eq}.\:\left({A}\right),\:\left({iii}\right),\:\left({iv}\right)\:{in}\:{eq}.\left(\boldsymbol{{ii}}\right) \\ $$$${a}=\frac{{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\left(\frac{\mathrm{3}}{{ML}^{\mathrm{2}} }\right)\left(\frac{{MgL}\mathrm{cos}\:\theta}{\mathrm{2}}−\frac{{maR}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\theta}\right) \\ $$$$\:\:\:\:\:+\frac{{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}\left[\frac{\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)}{\frac{{ML}^{\mathrm{2}} }{\mathrm{6}}+\frac{{mR}^{\mathrm{2}} }{\mathrm{8}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}}\right] \\ $$$$ \\ $$$${a}\left[\mathrm{1}+\frac{\mathrm{3}{mR}^{\mathrm{2}} \mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}}{\mathrm{2}{ML}^{\mathrm{2}} \mathrm{sin}\:\theta}\right]= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\left[\frac{\mathrm{3}{g}\mathrm{cos}\:\theta}{\mathrm{2}{L}}+\frac{\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)\mathrm{cot}\:\frac{\theta}{\mathrm{2}}}{\frac{{ML}^{\mathrm{2}} }{\mathrm{6}}+\frac{{mR}^{\mathrm{2}} }{\mathrm{8}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}}\right]\:\:. \\ $$
Commented by mrW2 last updated on 07/Feb/18
$${solution}\:{is}\:{correct}\:{sir}! \\ $$