Question Number 29550 by tawa tawa last updated on 09/Feb/18
Answered by ajfour last updated on 10/Feb/18
$${selecting}\:{three}\:{fine}\:{points}\:{from} \\ $$$${graph}: \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{5}},\:\mathrm{5}\right)\:;\:\:\left(\frac{\mathrm{2}}{\mathrm{5}},\:\mathrm{6}\right)\:;\:\left(\mathrm{2},\:\mathrm{0}\right) \\ $$$${y}={y}_{\mathrm{0}} +{ut}+\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\mathrm{0}={y}_{\mathrm{0}} +\mathrm{2}{u}+\mathrm{2}{a}\:\:\:\:…\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{5}={y}_{\mathrm{0}} +\frac{{u}}{\mathrm{5}}+\frac{{a}}{\mathrm{50}}\:\:\:\:\:….\left({ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{6}={y}_{\mathrm{0}} +\frac{\mathrm{2}{u}}{\mathrm{5}}+\frac{\mathrm{4}{a}}{\mathrm{50}}\:\:\:\:\:\:….\left({iii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\:\:\:\:\:\frac{\mathrm{9}{u}}{\mathrm{5}}+\frac{\mathrm{99}{a}}{\mathrm{50}}\:=−\mathrm{5}\:\:\:\:\:\:\:….\left({A}\right) \\ $$$$\left({iii}\right)−\left({iv}\right): \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{u}}{\mathrm{5}}+\frac{\mathrm{3}{a}}{\mathrm{50}}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:….\left({B}\right) \\ $$$$\left({A}\right)−\mathrm{9}×\left({B}\right)\:\:{gives}: \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{72}{a}}{\mathrm{50}}\:=\:−\mathrm{14} \\ $$$$\Rightarrow\:\:\:\:\:\boldsymbol{{a}}\:=\:−\frac{\mathrm{175}}{\mathrm{18}}\:{m}/{s}^{\mathrm{2}} \\ $$$$\:{From}\:\left({B}\right):\:\: \\ $$$$\:\:\:{u}=\mathrm{5}−\frac{\mathrm{3}{a}}{\mathrm{10}}\:=\:\mathrm{5}+\frac{\mathrm{3}×\mathrm{175}}{\mathrm{10}×\mathrm{18}}\: \\ $$$$\:\:\:\boldsymbol{{u}}\:=\:\frac{\mathrm{95}}{\mathrm{12}}\:{m}/{s} \\ $$$$\:{from}\:\left({i}\right): \\ $$$$\:\:\:\:\:{y}_{\mathrm{0}} =\:−\mathrm{2}{u}−\mathrm{2}{a} \\ $$$$\:\:\:\:\:\:\:\:=−\frac{\mathrm{95}}{\mathrm{6}}+\frac{\mathrm{175}}{\mathrm{9}}\:=\:\frac{−\mathrm{285}+\mathrm{350}}{\mathrm{18}} \\ $$$$\:\:\:\:\boldsymbol{{y}}_{\mathrm{0}} \:=\:\frac{\mathrm{65}}{\mathrm{18}}\:{m}\:. \\ $$$${eq}.\:{of}\:{motion}\:{is} \\ $$$$\:\:\:\:\:\boldsymbol{{y}}=\frac{\mathrm{65}}{\mathrm{18}}+\frac{\mathrm{95}\boldsymbol{{t}}}{\mathrm{12}}−\frac{\mathrm{175}\boldsymbol{{t}}^{\mathrm{2}} }{\mathrm{36}} \\ $$$${v}=\frac{{dy}}{{dt}}\:=\:\frac{\mathrm{95}}{\mathrm{12}}−\frac{\mathrm{175}{t}}{\mathrm{18}} \\ $$$$\Rightarrow\:\:{v}=\mathrm{0}\:\:\:{at}\:\:\:{t}_{\mathrm{1}} =\:\frac{\mathrm{95}×\mathrm{18}}{\mathrm{12}×\mathrm{175}}\:=\frac{\mathrm{19}×\mathrm{3}}{\mathrm{2}×\mathrm{35}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}_{\mathrm{1}} =\:\frac{\mathrm{57}}{\mathrm{70}}\: \\ $$$${let}\:{y}\:{at}\:{t}_{\mathrm{1}} \:{be}\:{y}_{\mathrm{1}} \:=\frac{\mathrm{65}}{\mathrm{18}}+\frac{\mathrm{95}×\mathrm{57}}{\mathrm{12}×\mathrm{70}}−\frac{\mathrm{175}}{\mathrm{36}}×\frac{\mathrm{57}}{\mathrm{70}}×\frac{\mathrm{57}}{\mathrm{70}} \\ $$$$……\:\:=\:\frac{\mathrm{65}}{\mathrm{18}}+\frac{\mathrm{57}\left(\mathrm{95}×\mathrm{3}×\mathrm{70}−\mathrm{175}×\mathrm{57}\right)}{\mathrm{36}×\mathrm{70}×\mathrm{70}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{65}}{\mathrm{18}}+\frac{\mathrm{57}×\mathrm{35}\left(\mathrm{95}×\mathrm{6}−\mathrm{57}×\mathrm{5}\right)}{\mathrm{36}×\mathrm{70}×\mathrm{70}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{65}}{\mathrm{18}}+\frac{\mathrm{57}×\mathrm{35}×\mathrm{57}×\mathrm{5}}{\mathrm{36}×\mathrm{70}×\mathrm{70}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{65}}{\mathrm{18}}+\frac{\mathrm{57}×\mathrm{57}}{\mathrm{36}×\mathrm{2}×\mathrm{14}}\:=\frac{\mathrm{65}×\mathrm{56}+\mathrm{57}×\mathrm{57}}{\mathrm{18}×\mathrm{56}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{6889}}{\mathrm{1008}}\:. \\ $$$${distance}\:{travelled}\:{in}\:\mathrm{2}{s}\: \\ $$$$\:\:\:\:={y}_{\mathrm{1}} −{y}_{\mathrm{0}} \:+{y}_{\mathrm{1}} \:=\mathrm{2}{y}_{\mathrm{1}} −{y}_{\mathrm{0}} \\ $$$$\:\:\:\:=\frac{\mathrm{6889}}{\mathrm{504}}−\frac{\mathrm{65}}{\mathrm{18}}\:=\frac{\mathrm{6889}−\mathrm{65}×\mathrm{28}}{\mathrm{504}} \\ $$$$\:\:\:=\:\frac{\mathrm{5069}}{\mathrm{504}}\:=\:\mathrm{10}\frac{\mathrm{29}}{\mathrm{504}}\:{m}. \\ $$
Commented by tawa tawa last updated on 09/Feb/18
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\: \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{three}\:\mathrm{integral}\:\mathrm{point}.\:\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{know}\:\mathrm{the}\:\mathrm{point}\:\mathrm{to}\:\mathrm{choose}\:? \\ $$$$\mathrm{Why}\:\mathrm{is}\:\mathrm{the}\:\mathrm{formular}:\:\:\mathrm{y}\:=\:\mathrm{y}_{\mathrm{0}} \:+\:\mathrm{ut}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{at}^{\mathrm{2}} \: \\ $$$$\mathrm{why}\:\mathrm{not}\:\:\:\:\:\mathrm{y}\:=\:\mathrm{ut}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{at}^{\mathrm{2}\:\:\:} ? \\ $$$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by tawa tawa last updated on 09/Feb/18
$$\mathrm{And}\:\mathrm{sir}.\:\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{answers}\:\mathrm{to}\:\mathrm{the}\:\mathrm{question}.\:\:\mathrm{look}\:\mathrm{like}\:\mathrm{you}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{through}\:\mathrm{with}\:\mathrm{the}\:\mathrm{workings}\:\mathrm{sir}.\:\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{help}. \\ $$$$\mathrm{waiting}\:\mathrm{for}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{question}.\:\:\left(\mathrm{i}\right),\:\:\left(\mathrm{ii}\right),\:\:\left(\mathrm{iii}\right) \\ $$
Commented by 33 last updated on 10/Feb/18
$${because}\:{the}\:{equation}\:{of}\:{motion} \\ $$$${is}\:{actually}\: \\ $$$$\Delta{x}\:=\:{ut}\:+\:\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}} \\ $$$$\left({x}_{\mathrm{2}\:} −\:{x}_{\mathrm{1}\:} \right)\:=\:{ut}\:+\:\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}} \\ $$$$\Rightarrow\:{x}\:=\:{x}_{\mathrm{0}} \:+\:{ut}\:+\:\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}} \\ $$$${as}\:{in}\:{this}\:{case}\:{x}_{\mathrm{0}} \:\neq\:\mathrm{0}\: \\ $$$$\left({clear}\:{from}\:{the}\:{graph}\right) \\ $$
Commented by tawa tawa last updated on 10/Feb/18
$$\mathrm{Understood}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$
Commented by tawa tawa last updated on 10/Feb/18
$$\mathrm{And}\:\mathrm{please}\:\mathrm{sir}.\:\mathrm{how}\:\mathrm{is}\:\mathrm{distance}\:\mathrm{travel}\:\mathrm{in}\:\:\mathrm{2s}\:\:=\:\:\mathrm{y}_{\mathrm{1}} \:−\:\mathrm{y}_{\mathrm{0}} \:+\:\mathrm{y}_{\mathrm{1}} \\ $$
Commented by 33 last updated on 10/Feb/18
$${pls}\:{see}\:{the}\:{graph}\:{its}\:{clear} \\ $$
Commented by tawa tawa last updated on 10/Feb/18
$$\mathrm{Ummm}.\:\mathrm{where}\:\mathrm{sir}\:\:??? \\ $$
Commented by ajfour last updated on 10/Feb/18
$${the}\:{graph}\:{in}\:{your}\:{question},\:{i}\:{think}, \\ $$$${is}\:{meant}. \\ $$