Menu Close

Question-29687




Question Number 29687 by ajfour last updated on 11/Feb/18
Commented by ajfour last updated on 11/Feb/18
Find the final velocity gained by a  tank of mass M, initially completely  filled with water and at rest, as it  slips on a frictionless ground owing  to a small opening at its base of  radius a, through which it drains  out. (Assume density of water 𝛒).
$${Find}\:{the}\:{final}\:{velocity}\:{gained}\:{by}\:{a} \\ $$$${tank}\:{of}\:{mass}\:{M},\:{initially}\:{completely} \\ $$$${filled}\:{with}\:{water}\:{and}\:{at}\:{rest},\:{as}\:{it} \\ $$$${slips}\:{on}\:{a}\:{frictionless}\:{ground}\:{owing} \\ $$$${to}\:{a}\:{small}\:{opening}\:{at}\:{its}\:{base}\:{of} \\ $$$${radius}\:{a},\:{through}\:{which}\:{it}\:{drains} \\ $$$${out}.\:\left({Assume}\:{density}\:{of}\:{water}\:\boldsymbol{\rho}\right). \\ $$
Commented by 803jaideep@gmail.com last updated on 11/Feb/18
isnt area of hole given?
$$\mathrm{isnt}\:\mathrm{area}\:\mathrm{of}\:\mathrm{hole}\:\mathrm{given}? \\ $$
Commented by ajfour last updated on 11/Feb/18
yes Ο€a^2   (please read question again).
$${yes}\:\pi{a}^{\mathrm{2}} \:\:\left({please}\:{read}\:{question}\:{again}\right). \\ $$
Commented by ajfour last updated on 11/Feb/18
whats the final speed of tank  by the time y→ 0 .
$${whats}\:{the}\:{final}\:{speed}\:{of}\:{tank} \\ $$$${by}\:{the}\:{time}\:{y}\rightarrow\:\mathrm{0}\:. \\ $$
Answered by mrW2 last updated on 12/Feb/18
M_W =mass of water at begin=Ο€R^2 hρ  at water depth y:  total mass: m=M+M_W (y/h)  β‡’(dm/dt)=(M_W /h)Γ—(dy/dt)  (relative) speed of outgoing water:  v=(√(2gy))    letβ€²s say speed of tank=u  βˆ’v(dm/dt)=m(du/dt)  βˆ’vΓ—(M_W /h)Γ—(dy/dt)=m(du/dy)Γ—(dy/dt)  βˆ’(M_W /h)v=m(du/dy)  βˆ’(M_W /h)(√(2gy))=(M+(M_W /h)y)(du/dy)  βˆ’(M_W /h)Γ—((√(2gy))/(M+(M_W /h)y)) dy=du  βˆ’(√(2g))Γ—((√y)/((((hM)/M_W )+y))) dy=du  with k=((hM)/M_W )  βˆ’(√(2g))Γ—βˆ«_h ^( 0) ((√y)/((k+y))) dy=∫_0 ^( u_(max) ) du  (√(2g))Γ—2(√k)[(√(y/k))βˆ’tan^(βˆ’1) (√(y/k))]_0 ^h =u_(max)   u_(max) =2(√(2gk))((√(h/k))βˆ’tan^(βˆ’1) (√(h/k)))  u_(max) =2(√((2ghM)/M_W ))((√(M_W /M))βˆ’tan^(βˆ’1) (√(M_W /M)))  with Ξ»=(M_W /M)  β‡’u_(max) =2(√((2gh)/Ξ»))((√λ)βˆ’tan^(βˆ’1) (√λ))    Example: Ξ»=(M_W /M)=5, h=1 m  β‡’u_(max) =2(√((20)/5))((√5)βˆ’tan^(βˆ’1) (√5))=4.3 m/s  ====================  u(y)=2(√(2gk))((√(h/k))βˆ’(√(y/k))βˆ’tan^(βˆ’1) (√(h/k))+tan^(βˆ’1) (√(y/k)))  Ο€a^2 vdt=βˆ’Ο€R^2 dy  β‡’(dy/dt)=βˆ’(a^2 /R^2 )v=βˆ’((a^2 (√(2gy)))/R^2 )  β‡’(dy/( (√y)))=βˆ’((a^2 (√(2g)))/R^2 ) dt  β‡’βˆ«_h ^( y) (dy/( (√y)))=βˆ’((a^2 (√(2g)))/R^2 ) ∫_0 ^( t) dt  β‡’2((√y)βˆ’(√h))=βˆ’((a^2 (√(2g)))/R^2 )Γ—t  β‡’(√y)=(√h)βˆ’((a^2 (√(2g)))/(2R^2 ))Γ—t=(√h)βˆ’pt  β‡’y=hβˆ’2(√h)pt+p^2 t^2   y=0β‡’t=((√h)/p)=(R^2 /a^2 )(√((2h)/g))=t_1  (at t_1  tank is empty)    β‡’u(t)=2(√(2gk))[((pt)/( (√k)))βˆ’tan^(βˆ’1) (√(h/k))+tan^(βˆ’1) ((√(h/k))βˆ’((pt)/( (√k))))]  with Ξ·=(p/( (√k)))=(a^2 /R^2 )(√((2gΞ»)/h))  β‡’u(t)=2(√((2gh)/Ξ»))[Ξ·tβˆ’tan^(βˆ’1) (√λ)+tan^(βˆ’1) ((√λ)βˆ’Ξ·t)]
$${M}_{{W}} ={mass}\:{of}\:{water}\:{at}\:{begin}=\pi{R}^{\mathrm{2}} {h}\rho \\ $$$${at}\:{water}\:{depth}\:{y}: \\ $$$${total}\:{mass}:\:{m}={M}+{M}_{{W}} \frac{{y}}{{h}} \\ $$$$\Rightarrow\frac{{dm}}{{dt}}=\frac{{M}_{{W}} }{{h}}Γ—\frac{{dy}}{{dt}} \\ $$$$\left({relative}\right)\:{speed}\:{of}\:{outgoing}\:{water}: \\ $$$${v}=\sqrt{\mathrm{2}{gy}} \\ $$$$ \\ $$$${let}'{s}\:{say}\:{speed}\:{of}\:{tank}={u} \\ $$$$βˆ’{v}\frac{{dm}}{{dt}}={m}\frac{{du}}{{dt}} \\ $$$$βˆ’{v}Γ—\frac{{M}_{{W}} }{{h}}Γ—\frac{{dy}}{{dt}}={m}\frac{{du}}{{dy}}Γ—\frac{{dy}}{{dt}} \\ $$$$βˆ’\frac{{M}_{{W}} }{{h}}{v}={m}\frac{{du}}{{dy}} \\ $$$$βˆ’\frac{{M}_{{W}} }{{h}}\sqrt{\mathrm{2}{gy}}=\left({M}+\frac{{M}_{{W}} }{{h}}{y}\right)\frac{{du}}{{dy}} \\ $$$$βˆ’\frac{{M}_{{W}} }{{h}}Γ—\frac{\sqrt{\mathrm{2}{gy}}}{{M}+\frac{{M}_{{W}} }{{h}}{y}}\:{dy}={du} \\ $$$$βˆ’\sqrt{\mathrm{2}{g}}Γ—\frac{\sqrt{{y}}}{\left(\frac{{hM}}{{M}_{{W}} }+{y}\right)}\:{dy}={du} \\ $$$${with}\:{k}=\frac{{hM}}{{M}_{{W}} } \\ $$$$βˆ’\sqrt{\mathrm{2}{g}}Γ—\int_{{h}} ^{\:\mathrm{0}} \frac{\sqrt{{y}}}{\left({k}+{y}\right)}\:{dy}=\int_{\mathrm{0}} ^{\:{u}_{{max}} } {du} \\ $$$$\sqrt{\mathrm{2}{g}}Γ—\mathrm{2}\sqrt{{k}}\left[\sqrt{\frac{{y}}{{k}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{y}}{{k}}}\right]_{\mathrm{0}} ^{{h}} ={u}_{{max}} \\ $$$${u}_{{max}} =\mathrm{2}\sqrt{\mathrm{2}{gk}}\left(\sqrt{\frac{{h}}{{k}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{h}}{{k}}}\right) \\ $$$${u}_{{max}} =\mathrm{2}\sqrt{\frac{\mathrm{2}{ghM}}{{M}_{{W}} }}\left(\sqrt{\frac{{M}_{{W}} }{{M}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{M}_{{W}} }{{M}}}\right) \\ $$$${with}\:\lambda=\frac{{M}_{{W}} }{{M}} \\ $$$$\Rightarrow{u}_{{max}} =\mathrm{2}\sqrt{\frac{\mathrm{2}{gh}}{\lambda}}\left(\sqrt{\lambda}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\lambda}\right) \\ $$$$ \\ $$$${Example}:\:\lambda=\frac{{M}_{{W}} }{{M}}=\mathrm{5},\:{h}=\mathrm{1}\:{m} \\ $$$$\Rightarrow{u}_{{max}} =\mathrm{2}\sqrt{\frac{\mathrm{20}}{\mathrm{5}}}\left(\sqrt{\mathrm{5}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\mathrm{5}}\right)=\mathrm{4}.\mathrm{3}\:{m}/{s} \\ $$$$==================== \\ $$$${u}\left({y}\right)=\mathrm{2}\sqrt{\mathrm{2}{gk}}\left(\sqrt{\frac{{h}}{{k}}}βˆ’\sqrt{\frac{{y}}{{k}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{h}}{{k}}}+\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{y}}{{k}}}\right) \\ $$$$\pi{a}^{\mathrm{2}} {vdt}=βˆ’\pi{R}^{\mathrm{2}} {dy} \\ $$$$\Rightarrow\frac{{dy}}{{dt}}=βˆ’\frac{{a}^{\mathrm{2}} }{{R}^{\mathrm{2}} }{v}=βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{gy}}}{{R}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{dy}}{\:\sqrt{{y}}}=βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{{R}^{\mathrm{2}} }\:{dt} \\ $$$$\Rightarrow\int_{{h}} ^{\:{y}} \frac{{dy}}{\:\sqrt{{y}}}=βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{{R}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:{t}} {dt} \\ $$$$\Rightarrow\mathrm{2}\left(\sqrt{{y}}βˆ’\sqrt{{h}}\right)=βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{{R}^{\mathrm{2}} }Γ—{t} \\ $$$$\Rightarrow\sqrt{{y}}=\sqrt{{h}}βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{\mathrm{2}{R}^{\mathrm{2}} }Γ—{t}=\sqrt{{h}}βˆ’{pt} \\ $$$$\Rightarrow{y}={h}βˆ’\mathrm{2}\sqrt{{h}}{pt}+{p}^{\mathrm{2}} {t}^{\mathrm{2}} \\ $$$${y}=\mathrm{0}\Rightarrow{t}=\frac{\sqrt{{h}}}{{p}}=\frac{{R}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\sqrt{\frac{\mathrm{2}{h}}{{g}}}={t}_{\mathrm{1}} \:\left({at}\:{t}_{\mathrm{1}} \:{tank}\:{is}\:{empty}\right) \\ $$$$ \\ $$$$\Rightarrow{u}\left({t}\right)=\mathrm{2}\sqrt{\mathrm{2}{gk}}\left[\frac{{pt}}{\:\sqrt{{k}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{h}}{{k}}}+\mathrm{tan}^{βˆ’\mathrm{1}} \left(\sqrt{\frac{{h}}{{k}}}βˆ’\frac{{pt}}{\:\sqrt{{k}}}\right)\right] \\ $$$${with}\:\eta=\frac{{p}}{\:\sqrt{{k}}}=\frac{{a}^{\mathrm{2}} }{{R}^{\mathrm{2}} }\sqrt{\frac{\mathrm{2}{g}\lambda}{{h}}} \\ $$$$\Rightarrow{u}\left({t}\right)=\mathrm{2}\sqrt{\frac{\mathrm{2}{gh}}{\lambda}}\left[\eta{t}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\lambda}+\mathrm{tan}^{βˆ’\mathrm{1}} \left(\sqrt{\lambda}βˆ’\eta{t}\right)\right] \\ $$
Commented by mrW2 last updated on 12/Feb/18
Is any solution for this question given?
Commented by ajfour last updated on 12/Feb/18
SUPERB! Sir, Energy method  leads to a complicated differential  equation, i guess.   Your method is Excellent , Sir.
$$\mathbb{SUPERB}!\:{Sir},\:{Energy}\:{method} \\ $$$${leads}\:{to}\:{a}\:{complicated}\:{differential} \\ $$$${equation},\:{i}\:{guess}.\: \\ $$$${Your}\:{method}\:{is}\:\mathscr{E}{xcellent}\:,\:{Sir}. \\ $$
Commented by ajfour last updated on 12/Feb/18
No sir, not from book.
$${No}\:{sir},\:{not}\:{from}\:{book}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *