Menu Close

Question-29723




Question Number 29723 by ajfour last updated on 11/Feb/18
Commented by ajfour last updated on 11/Feb/18
Express c in terms of a, b .
$${Express}\:\boldsymbol{{c}}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}},\:\boldsymbol{{b}}\:. \\ $$
Answered by mrW2 last updated on 11/Feb/18
Commented by ajfour last updated on 12/Feb/18
Thank you Sir.
$${Thank}\:{you}\:{Sir}. \\ $$
Commented by mrW2 last updated on 11/Feb/18
cos α=(b/a)  β=π−α  CB=(√(a^2 −b^2 ))  BD=b−(√(a^2 −b^2 ))  c^2 =a^2 +(b−(√(a^2 −b^2 )))^2 −2a(b−(√(a^2 −b^2 )))cos β  c^2 =a^2 +(b−(√(a^2 −b^2 )))^2 +2a(b−(√(a^2 −b^2 )))cos α  c^2 =a^2 +(b−(√(a^2 −b^2 )))^2 +2a(b−(√(a^2 −b^2 )))(b/a)  c^2 =a^2 +(b−(√(a^2 −b^2 )))^2 +2b(b−(√(a^2 −b^2 )))  c^2 =a^2 +b^2 +a^2 −b^2 −2b(√(a^2 −b^2 ))+2b^2 −2b(√(a^2 −b^2 ))  c^2 =2(a^2 +b^2 −2b(√(a^2 −b^2 )))  ⇒c=(√(2(a^2 +b^2 −2b(√(a^2 −b^2 )))))
$$\mathrm{cos}\:\alpha=\frac{{b}}{{a}} \\ $$$$\beta=\pi−\alpha \\ $$$${CB}=\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${BD}={b}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({b}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)^{\mathrm{2}} −\mathrm{2}{a}\left({b}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)\mathrm{cos}\:\beta \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({b}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)^{\mathrm{2}} +\mathrm{2}{a}\left({b}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)\mathrm{cos}\:\alpha \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({b}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)^{\mathrm{2}} +\mathrm{2}{a}\left({b}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)\frac{{b}}{{a}} \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({b}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)^{\mathrm{2}} +\mathrm{2}{b}\left({b}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right) \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −\mathrm{2}{b}\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }+\mathrm{2}{b}^{\mathrm{2}} −\mathrm{2}{b}\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${c}^{\mathrm{2}} =\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{b}\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{c}=\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{b}\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *