Menu Close

Question-29727




Question Number 29727 by Tinkutara last updated on 11/Feb/18
Commented by 803jaideep@gmail.com last updated on 11/Feb/18
min force 550?
minforce550?
Commented by Tinkutara last updated on 11/Feb/18
No, it is ✖
Commented by 803jaideep@gmail.com last updated on 11/Feb/18
435 thn?
435thn?
Commented by Tinkutara last updated on 11/Feb/18
❌
Answered by mrW2 last updated on 11/Feb/18
To keep sliding the box:  F cos θ=μ_k (mg−F sin θ)  F=((μ_k mg)/(cos θ+μ_k sin θ))  F=((μ_k mg)/( (√(1+μ_k ^2 )) ((1/( (√(1+μ_k ^2 ))))cos θ+(μ_k /( (√(1+μ_k ^2 ))))sin θ)))  F=((μ_k mg)/( (√(1+μ_k ^2 )) (cos α cos θ+sin α sin θ)))  with α=tan^(−1) μ_k   F=((μ_k mg)/( (√(1+μ_k ^2 )) cos (θ−α)))  F_(k,min) =(μ_k /( (√(1+μ_k ^2 )))) mg=((0.2)/( (√(1+0.2^2 ))))×200×10=392 N  at θ=α_k =tan^(−1) 0.2=11.3°    To bring the box to move:  F_(s,min) =(μ_s /( (√(1+μ_s ^2 )))) mg=((0.25)/( (√(1+0.25^2 ))))×200×10=485 N    W=F_(s,min)  cos α_s  ×0+F_(k,min)  cos α_k  ×l=392×cos 11.3°×20≈7688 J
Tokeepslidingthebox:Fcosθ=μk(mgFsinθ)F=μkmgcosθ+μksinθF=μkmg1+μk2(11+μk2cosθ+μk1+μk2sinθ)F=μkmg1+μk2(cosαcosθ+sinαsinθ)withα=tan1μkF=μkmg1+μk2cos(θα)Fk,min=μk1+μk2mg=0.21+0.22×200×10=392Natθ=αk=tan10.2=11.3°Tobringtheboxtomove:Fs,min=μs1+μs2mg=0.251+0.252×200×10=485NW=Fs,mincosαs×0+Fk,mincosαk×l=392×cos11.3°×207688J
Commented by Tinkutara last updated on 12/Feb/18
Answers given are 7690 J, 470 N
Commented by Tinkutara last updated on 12/Feb/18
Thank you very much Sir! I got the answer.

Leave a Reply

Your email address will not be published. Required fields are marked *