Menu Close

Question-29803




Question Number 29803 by ajfour last updated on 12/Feb/18
Commented by ajfour last updated on 12/Feb/18
Commented by ajfour last updated on 12/Feb/18
  𝛕^�  =r^� ×M g^�         =[R(cos 𝛗i^� +sin 𝛗j^� )+(Rcot α)k^� ]×(−Mg k^� )    L^�  = Iωsin α(cos 𝛗i^� +sin 𝛗j^� )                    +(Iωcos α) k^�   from    𝛕^�   = (dL^� /dt)  , we get    MgR(−sin 𝛗i^� +cos 𝛗j^� ) =     Iωsin α(−sin 𝛗i^� +cos 𝛗j^� )(d𝛗/dt)  ⇒    (d𝛗/dt) = Ω = ((MgR)/(Iωsin α))  or       𝛀^�  =((MgR)/((((Mr^2 ωsin α)/2))))k^�               𝛀^�  = ((2gR)/(ωr^2 sin α)) k^�      ⇒    𝛕^�   = 𝛀^� ×I𝛚^�       MgR = (((2gR)/(ωr^2 sin α)))(((Mr^2 )/2))ωsin α  The direction even is consistent.
$$\:\:\bar {\boldsymbol{\tau}}\:=\bar {\boldsymbol{{r}}}×{M}\:\bar {\boldsymbol{{g}}} \\ $$$$\:\:\:\:\:\:=\left[{R}\left(\mathrm{cos}\:\boldsymbol{\phi}\hat {{i}}+\mathrm{sin}\:\boldsymbol{\phi}\hat {{j}}\right)+\left({R}\mathrm{cot}\:\alpha\right)\hat {{k}}\right]×\left(−{Mg}\:\hat {{k}}\right) \\ $$$$\:\:\bar {\boldsymbol{{L}}}\:=\:{I}\omega\mathrm{sin}\:\alpha\left(\mathrm{cos}\:\boldsymbol{\phi}\hat {{i}}+\mathrm{sin}\:\boldsymbol{\phi}\hat {{j}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({I}\omega\mathrm{cos}\:\alpha\right)\:\hat {{k}} \\ $$$${from}\:\:\:\:\bar {\boldsymbol{\tau}}\:\:=\:\frac{{d}\bar {{L}}}{{dt}}\:\:,\:{we}\:{get} \\ $$$$\:\:{MgR}\left(−\mathrm{sin}\:\boldsymbol{\phi}\hat {{i}}+\mathrm{cos}\:\boldsymbol{\phi}\hat {{j}}\right)\:= \\ $$$$\:\:\:{I}\omega\mathrm{sin}\:\alpha\left(−\mathrm{sin}\:\boldsymbol{\phi}\hat {{i}}+\mathrm{cos}\:\boldsymbol{\phi}\hat {{j}}\right)\frac{{d}\boldsymbol{\phi}}{{dt}} \\ $$$$\Rightarrow\:\:\:\:\frac{{d}\boldsymbol{\phi}}{{dt}}\:=\:\Omega\:=\:\frac{{MgR}}{{I}\omega\mathrm{sin}\:\alpha} \\ $$$${or}\:\:\:\:\:\:\:\bar {\boldsymbol{\Omega}}\:=\frac{{MgR}}{\left(\frac{{Mr}^{\mathrm{2}} \omega\mathrm{sin}\:\alpha}{\mathrm{2}}\right)}\hat {{k}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\bar {\boldsymbol{\Omega}}\:=\:\frac{\mathrm{2}{gR}}{\omega{r}^{\mathrm{2}} \mathrm{sin}\:\alpha}\:\hat {{k}} \\ $$$$\:\:\:\Rightarrow\:\:\:\:\bar {\boldsymbol{\tau}}\:\:=\:\bar {\boldsymbol{\Omega}}×\boldsymbol{{I}}\bar {\boldsymbol{\omega}}\:\:\: \\ $$$$\:{MgR}\:=\:\left(\frac{\mathrm{2}{gR}}{\omega{r}^{\mathrm{2}} \mathrm{sin}\:\alpha}\right)\left(\frac{{Mr}^{\mathrm{2}} }{\mathrm{2}}\right)\omega\mathrm{sin}\:\alpha \\ $$$${The}\:{direction}\:{even}\:{is}\:{consistent}.\: \\ $$
Commented by ajfour last updated on 13/Feb/18
Find Ω in terms of M,r,R,ω, α  given α stays constant.  What is θ=α(t), Ω(t) in terms of  (dω/dt) ?
$${Find}\:\Omega\:{in}\:{terms}\:{of}\:{M},{r},{R},\omega,\:\alpha \\ $$$${given}\:\alpha\:{stays}\:{constant}. \\ $$$${What}\:{is}\:\theta=\alpha\left({t}\right),\:\Omega\left({t}\right)\:{in}\:{terms}\:{of} \\ $$$$\frac{{d}\omega}{{dt}}\:? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *