Question Number 30002 by rahul 19 last updated on 14/Feb/18
Commented by ajfour last updated on 14/Feb/18
$${wrong}\:{options},\:{i}\:{think}. \\ $$
Commented by ajfour last updated on 15/Feb/18
Commented by ajfour last updated on 15/Feb/18
$${let}\:{slope}\:{of}\:{common}\:{tangent}\:{be}\:\boldsymbol{{m}}. \\ $$$$\boldsymbol{{m}}=\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}\mid_{{x}_{\mathrm{1}} } \:=\:−\mathrm{2}{x}_{\mathrm{1}} +\mathrm{1}\:\:\:\:\:…\left({i}\right) \\ $$$${y}_{\mathrm{1}} =−{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:…..\left({ii}\right) \\ $$$${slope}\:{of}\:{FM}=\frac{{k}−\frac{\mathrm{1}}{\mathrm{2}}}{{h}−\frac{\mathrm{1}}{\mathrm{2}}}\:=\:−\frac{\mathrm{1}}{{m}} \\ $$$$\Rightarrow\:\:{m}=\frac{\mathrm{2}{h}−\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}}\:\:\:\:\:\:\:\:\:…..\left({iii}\right) \\ $$$${eq}.\:{of}\:{tangent}\: \\ $$$${y}−{y}_{\mathrm{1}} ={m}\left({x}−{x}_{\mathrm{1}} \right) \\ $$$${mid}\:{point}\:{of}\:{FM}\:{is}\:\left({h}+\frac{\mathrm{1}}{\mathrm{2}}\:,\:{k}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${It}\:{lies}\:{on}\:{tangent},\:{hence} \\ $$$${k}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{y}_{\mathrm{1}} ={m}\left({h}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{x}_{\mathrm{1}} \right)\:\:\:…\left({iv}\right) \\ $$$${using}\:\left({i}\right),\:\left({ii}\right)\:{and}\:\left({iii}\right)\:\:{in}\:\left({iv}\right)\:: \\ $$$${k}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}{x}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{x}_{\mathrm{1}} −\mathrm{1}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}−\mathrm{2}{x}_{\mathrm{1}} \right)\left({h}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{x}_{\mathrm{1}} \right) \\ $$$${k}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}{x}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{x}_{\mathrm{1}} −\mathrm{1}={h}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{x}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}{hx}_{\mathrm{1}} −{x}_{\mathrm{1}} +\mathrm{4}{x}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$${k}−\mathrm{1}={h}\left(\mathrm{1}−\mathrm{2}{x}_{\mathrm{1}} \right)+\mathrm{2}{x}_{\mathrm{1}} ^{\mathrm{2}} −{x}_{\mathrm{1}} \\ $$$${k}−\mathrm{1}=\left({h}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−\mathrm{2}{x}_{\mathrm{1}} \right) \\ $$$${k}−\mathrm{1}=\left({h}−{x}_{\mathrm{1}} \right){m} \\ $$$${k}−\mathrm{1}=\left({h}+\frac{{m}−\mathrm{1}}{\mathrm{2}}\right){m} \\ $$$$\mathrm{2}\left({k}−\mathrm{1}\right)=\left(\mathrm{2}{h}−\mathrm{1}+{m}\right){m} \\ $$$$\mathrm{2}\left({k}−\mathrm{1}\right)=\left(\mathrm{2}{h}−\mathrm{1}+\frac{\mathrm{2}{h}−\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}}\right)\left(\frac{\mathrm{2}{h}−\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}}\right) \\ $$$$\mathrm{2}\left({k}−\mathrm{1}\right)=\frac{\left(\mathrm{2}{h}−\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{2}{k}\right)}\left(\frac{\mathrm{2}−\mathrm{2}{k}}{\mathrm{1}−\mathrm{2}{k}}\right) \\ $$$$\Rightarrow\:\:\left({k}−\mathrm{1}\right)\left[\mathrm{1}+\left(\frac{\mathrm{2}{h}−\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}}\right)^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{k}=\mathrm{1} \\ $$$${hence}\:{locus}\:{is}\:\:\:\:\boldsymbol{{y}}=\mathrm{1}\:\:\:. \\ $$$$\left({There}\:{has}\:{to}\:{be}\:{a}\:{shorter}\:{way},\right. \\ $$$$\left.\:\:\:{i}\:{couldn}'{t}\:{find}\:{presently}\right) \\ $$
Commented by rahul 19 last updated on 15/Feb/18
$$\mathrm{thank}\:\mathrm{u}\:\mathrm{sir}! \\ $$$$\omega\boldsymbol{\mathrm{o}\omega}. \\ $$
Commented by rahul 19 last updated on 15/Feb/18
$$\mathrm{ok}\:\mathrm{sir},\:\mathrm{then}\:\mathrm{plz}\:\mathrm{provide}\:\mathrm{your}\:\mathrm{solution}. \\ $$$$\mathrm{ignoring}\:\mathrm{the}\:\mathrm{options}. \\ $$