Menu Close

Question-30079




Question Number 30079 by naka3546 last updated on 16/Feb/18
Commented by naka3546 last updated on 16/Feb/18
Luas  is  Area  in  Indonesia .
$${Luas}\:\:{is}\:\:{Area}\:\:{in}\:\:{Indonesia}\:. \\ $$
Answered by $@ty@m last updated on 16/Feb/18
Let us draw PN⊥AD  ar(APD)=(1/2)×AD×PN −−(1)  ar(FCD)=(1/2)×FC×2PN   ar(FCD)=(1/2)×((1/2)×AD)×2PN   =(1/2)×AD×PN −−−(2)  ⇒ar(APD)=ar(FCD)   ⇒ar(APD)−ar(EPD)=ar(FCD)−ar(EPD)  ⇒ar(FCPE)=ar(ADE)
$${Let}\:{us}\:{draw}\:{PN}\bot{AD} \\ $$$${ar}\left({APD}\right)=\frac{\mathrm{1}}{\mathrm{2}}×{AD}×{PN}\:−−\left(\mathrm{1}\right) \\ $$$${ar}\left({FCD}\right)=\frac{\mathrm{1}}{\mathrm{2}}×{FC}×\mathrm{2}{PN}\: \\ $$$${ar}\left({FCD}\right)=\frac{\mathrm{1}}{\mathrm{2}}×\left(\frac{\mathrm{1}}{\mathrm{2}}×{AD}\right)×\mathrm{2}{PN}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×{AD}×{PN}\:−−−\left(\mathrm{2}\right) \\ $$$$\Rightarrow{ar}\left({APD}\right)={ar}\left({FCD}\right)\: \\ $$$$\Rightarrow{ar}\left({APD}\right)−{ar}\left({EPD}\right)={ar}\left({FCD}\right)−{ar}\left({EPD}\right) \\ $$$$\Rightarrow{ar}\left({FCPE}\right)={ar}\left({ADE}\right) \\ $$
Answered by ajfour last updated on 16/Feb/18
(1/(11)) .
$$\frac{\mathrm{1}}{\mathrm{11}}\:. \\ $$
Commented by naka3546 last updated on 16/Feb/18
how to get   (1/(11))  ?
$${how}\:{to}\:{get}\:\:\:\frac{\mathrm{1}}{\mathrm{11}}\:\:? \\ $$
Answered by ajfour last updated on 16/Feb/18
Commented by ajfour last updated on 16/Feb/18
let entire area(of //gm) = 4A^�   4A^�  = a^� ×b^�   since ar(EDA)=ar(FCPE)  ar(EDA)+ar(EPD)=                          ar(FCPA)+ar(EPD)  ⇒ ar(DAP)= ar(DFC)        (1/2)(a^� ×(b^� /2))= (1/2)(λa^� ×b^� )  ⇒   ((a^� ×b^� )/4) = A^�  =(1/2)( λa^� ×b^� )  ⇒  𝛌 =(1/2) .....(i)   as   DE^(−)  =DP^(−) +PE^(−)   ⇒   ρ(b^� +λa^� )=(b^� /2)+μ(a^� −(b^� /2))  ⇒   ρ(b^� +(a^� /2))=(b^� /2)+μ(a^� −(b^� /2))  so comparing coefficients of  a^�  and b^�   we get        𝛒=(1/2)−(𝛍/2)    and   (𝛒/2)=𝛍  ⇒    2ρ =1−μ   and  ρ=2μ  ⇒     4μ = 1−μ         or   𝛍=(1/5)     ;  𝛒=(2/5) .....(ii)    ((ar(DPE))/(ar(ABFE))) = ((μ×ar(DAP))/(ar(ABCD)−2×ar(DAP)+ar(DEP)))     =((μA^� )/(4A^� −2A^� +μA^� ))    and with μ=(1/5)  ((ar(DPE))/(ar(ABFE)))=((1/5)/(2+(1/5))) = (1/(11))  .
$${let}\:{entire}\:{area}\left({of}\://{gm}\right)\:=\:\mathrm{4}\bar {{A}} \\ $$$$\mathrm{4}\bar {{A}}\:=\:\bar {{a}}×\bar {{b}} \\ $$$${since}\:{ar}\left({EDA}\right)={ar}\left({FCPE}\right) \\ $$$${ar}\left({EDA}\right)+{ar}\left({EPD}\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ar}\left({FCPA}\right)+{ar}\left({EPD}\right) \\ $$$$\Rightarrow\:{ar}\left({DAP}\right)=\:{ar}\left({DFC}\right) \\ $$$$\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left(\bar {{a}}×\frac{\bar {{b}}}{\mathrm{2}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\lambda\bar {{a}}×\bar {{b}}\right) \\ $$$$\Rightarrow\:\:\:\frac{\bar {{a}}×\bar {{b}}}{\mathrm{4}}\:=\:\bar {{A}}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\:\lambda\bar {{a}}×\bar {{b}}\right) \\ $$$$\Rightarrow\:\:\boldsymbol{\lambda}\:=\frac{\mathrm{1}}{\mathrm{2}}\:…..\left({i}\right) \\ $$$$\:{as}\:\:\:\overline {{DE}}\:=\overline {{DP}}+\overline {{PE}} \\ $$$$\Rightarrow\:\:\:\rho\left(\bar {{b}}+\lambda\bar {{a}}\right)=\frac{\bar {{b}}}{\mathrm{2}}+\mu\left(\bar {{a}}−\frac{\bar {{b}}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:\:\rho\left(\bar {{b}}+\frac{\bar {{a}}}{\mathrm{2}}\right)=\frac{\bar {{b}}}{\mathrm{2}}+\mu\left(\bar {{a}}−\frac{\bar {{b}}}{\mathrm{2}}\right) \\ $$$${so}\:{comparing}\:{coefficients}\:{of} \\ $$$$\bar {{a}}\:{and}\:\bar {{b}}\:\:{we}\:{get} \\ $$$$\:\:\:\:\:\:\boldsymbol{\rho}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\boldsymbol{\mu}}{\mathrm{2}}\:\:\:\:{and}\:\:\:\frac{\boldsymbol{\rho}}{\mathrm{2}}=\boldsymbol{\mu} \\ $$$$\Rightarrow\:\:\:\:\mathrm{2}\rho\:=\mathrm{1}−\mu\:\:\:{and}\:\:\rho=\mathrm{2}\mu \\ $$$$\Rightarrow\:\:\:\:\:\mathrm{4}\mu\:=\:\mathrm{1}−\mu\:\:\: \\ $$$$\:\:\:\:{or}\:\:\:\boldsymbol{\mu}=\frac{\mathrm{1}}{\mathrm{5}}\:\:\:\:\:;\:\:\boldsymbol{\rho}=\frac{\mathrm{2}}{\mathrm{5}}\:…..\left({ii}\right) \\ $$$$\:\:\frac{{ar}\left({DPE}\right)}{{ar}\left({ABFE}\right)}\:=\:\frac{\mu×{ar}\left({DAP}\right)}{{ar}\left({ABCD}\right)−\mathrm{2}×{ar}\left({DAP}\right)+{ar}\left({DEP}\right)} \\ $$$$\:\:\:=\frac{\mu\bar {{A}}}{\mathrm{4}\bar {{A}}−\mathrm{2}\bar {{A}}+\mu\bar {{A}}}\:\:\:\:{and}\:{with}\:\mu=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\frac{{ar}\left({DPE}\right)}{{ar}\left({ABFE}\right)}=\frac{\mathrm{1}/\mathrm{5}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{5}}}\:=\:\frac{\mathrm{1}}{\mathrm{11}}\:\:. \\ $$
Answered by mrW2 last updated on 16/Feb/18
Commented by mrW2 last updated on 17/Feb/18
let S=Area of ABCD  ΔADP=(S/4)=S_1 +S_3   ΔCDF=S_1 +S_3 =(S/4)  ⇒FC=((BC)/2)  CG=AD=BC  ((FG)/(CG))=(3/2)  ((Area of ΔEFG)/(Area of ΔHCG))=(((FG)/(CG)))^2   ⇒((S_3 +S_1 +S_3 )/S_3 )=((3/2))^2 =(9/4)  8S_3 +4S_1 =9S_3   ⇒S_3 =4S_1   S_3 +S_1 =5S_1 =(S/4)  ⇒S_1 =(S/(20))  ⇒S_3 =4S_1 =(1/5)S  S_2 +S_3 =(3/4)S  ⇒S_2 =(3/4)S−S_3 =(3/4)S−(1/5)S=((11)/(20))S=11S_1   ⇒(S_1 /S_2 )=(1/(11))
$${let}\:{S}={Area}\:{of}\:{ABCD} \\ $$$$\Delta{ADP}=\frac{{S}}{\mathrm{4}}={S}_{\mathrm{1}} +{S}_{\mathrm{3}} \\ $$$$\Delta{CDF}={S}_{\mathrm{1}} +{S}_{\mathrm{3}} =\frac{{S}}{\mathrm{4}} \\ $$$$\Rightarrow{FC}=\frac{{BC}}{\mathrm{2}} \\ $$$${CG}={AD}={BC} \\ $$$$\frac{{FG}}{{CG}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\frac{{Area}\:{of}\:\Delta{EFG}}{{Area}\:{of}\:\Delta{HCG}}=\left(\frac{{FG}}{{CG}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{S}_{\mathrm{3}} +{S}_{\mathrm{1}} +{S}_{\mathrm{3}} }{{S}_{\mathrm{3}} }=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\mathrm{8}{S}_{\mathrm{3}} +\mathrm{4}{S}_{\mathrm{1}} =\mathrm{9}{S}_{\mathrm{3}} \\ $$$$\Rightarrow{S}_{\mathrm{3}} =\mathrm{4}{S}_{\mathrm{1}} \\ $$$${S}_{\mathrm{3}} +{S}_{\mathrm{1}} =\mathrm{5}{S}_{\mathrm{1}} =\frac{{S}}{\mathrm{4}} \\ $$$$\Rightarrow{S}_{\mathrm{1}} =\frac{{S}}{\mathrm{20}} \\ $$$$\Rightarrow{S}_{\mathrm{3}} =\mathrm{4}{S}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{5}}{S} \\ $$$${S}_{\mathrm{2}} +{S}_{\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{4}}{S} \\ $$$$\Rightarrow{S}_{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}}{S}−{S}_{\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{4}}{S}−\frac{\mathrm{1}}{\mathrm{5}}{S}=\frac{\mathrm{11}}{\mathrm{20}}{S}=\mathrm{11}{S}_{\mathrm{1}} \\ $$$$\Rightarrow\frac{{S}_{\mathrm{1}} }{{S}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{11}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *