Question Number 30120 by ajfour last updated on 16/Feb/18

Commented by ajfour last updated on 16/Feb/18

Answered by mrW2 last updated on 17/Feb/18

Commented by ajfour last updated on 17/Feb/18

Commented by mrW2 last updated on 17/Feb/18

Commented by mrW2 last updated on 17/Feb/18
![let AB=c, BC=a, ∠ABC=θ B(0,0) D(λa,0) C(a,0) F(μc cos θ,μc sin θ) A(c cos θ,c sin θ) Eqn. of CF: ((y−0)/(x−a))=((μc sin θ−0)/(μc cos θ−a)) y(μc cos θ−a)=(x−a)μc sin θ Eqn. of AD ((y−0)/(x−λa))=((c sin θ−0)/(c cos θ−λa)) y(c cos θ−λa)=(x−λa)c sin θ Point G: y_G (μc cos θ−a)=(x_G −a)μc sin θ y_G (c cos θ−λa)=(x_G −λa)c sin θ ⇒((μc cos θ−a)/(c cos θ−λa))=(((x_G −a)μ)/(x_G −λa)) ⇒(μc cos θ −a)x_G −λμac cos θ+λa^2 =(μc cos θ−λμa)x_G −μac cos θ+λμa^2 ⇒(1−λμ)x_G =(1−λ)μc cos θ+λ(1−μ)a ⇒x_G =(((1−λ)μc cos θ+λ(1−μ)a)/(1−λμ)) ⇒y_G =((c sin θ(x_G −λa))/(c cos θ−λa)) ⇒y_G =((c sin θ)/(c cos θ−λa))×[(((1−λ)μc cos θ+λ(1−μ)a−λa(1−λμ))/(1−λμ))] ⇒y_G =(((1−λ)μc sin θ)/(1−λμ)) Eqn. of BE: (y/x)=((((1−λ)μc sin θ)/(1−λμ))/(((1−λ)μc cos θ+λ(1−μ)a)/(1−λμ)))=(((1−λ)μc sin θ)/((1−λ)μc cos θ+λ(1−μ)a)) y[(1−λ)μc cos θ+λ(1−μ)a]=x(1−λ)μc sin θ Eqn. of AC: ((y−0)/(x−a))=((c sin θ−0)/(c cos θ−a)) y(c cos θ−a)=(x−a)c sin θ Point E: y_E [(1−λ)μc cos θ+λ(1−μ)a]=x_E (1−λ)μc sin θ y_E (c cos θ−a)=(x_E −a)c sin θ ⇒(((1−λ)μc cos θ+λ(1−μ)a)/(c cos θ−a))=((x_E (1−λ)μ)/(x_E −a)) [(1−λ)μc cos θ+λ(1−μ)a]x_E −a[(1−λ)μc cos θ+λ(1−μ)a]=(1−λ)μ(c cos θ−a)x_E [(1−λ)μa+λ(1−μ)a]x_E =a[(1−λ)μc cos θ+λ(1−μ)a] [λ+μ(1−2λ)]x_E =(1−λ)μc cos θ+λ(1−μ)a ⇒x_E =(((1−λ)μc cos θ+λ(1−μ)a)/(λ+μ(1−2λ))) ⇒y_E =((c sin θ(x_E −a))/(c cos θ−a))=((c sin θ)/(c cos θ−a))×[(((1−λ)μc cos θ+λ(1−μ)a−aλ−aμ(1−2λ))/(λ+μ(1−2λ)))] ⇒y_E =((c sin θ)/(c cos θ−a))×[(((1−λ)μ(c cos θ−a))/(λ+μ(1−2λ)))] ⇒y_E =(((1−λ)μc sin θ)/(λ+μ(1−2λ))) η=(x_G /x_E )=(((1−λ)μc cos θ+λ(1−μ)a)/(1−λμ))×((λ+μ(1−2λ))/((1−λ)μc cos θ+λ(1−μ)a)) ⇒η=((λ+μ(1−2λ))/(1−λμ))=((λ+μ−2λμ)/(1−λμ)) ...(I) ε=(y_E /y_A )=(((1−λ)μc sin θ)/(λ+μ(1−2λ)))×(1/(c sin θ)) ⇒ε=(((1−λ)μ)/(λ+μ(1−2λ)))=((μ−λμ)/(λ+μ−2λμ)) ...(II) using these two relations all other values can be determined. σ=((ε+(1−λ)(1−2ε))/(1−ε(1−λ))) σ=(((((1−λ)μ)/(λ+μ(1−2λ)))+(1−λ)(1−((2(1−λ)μ)/(λ+μ(1−2λ)))))/(1−(((1−λ)μ)/(λ+μ(1−2λ)))(1−λ))) σ=(((1−λ)μ+(1−λ)[λ+μ(1−2λ)−2(1−λ)μ])/(λ+μ(1−2λ)−(1−λ)^2 μ)) ⇒σ=((1−λ)/(1−λμ)) ρ=(((1−μ)+(1−ε)[1−2(1−μ)])/(1−(1−μ)(1−ε))) ρ=(((1−μ)+[1−(((1−λ)μ)/(λ+μ(1−2λ)))][1−2(1−μ)])/(1−(1−μ)[1−(((1−λ)μ)/(λ+μ(1−2λ)))])) ρ=(((1−μ)[λ+μ(1−2λ)]+[λ+μ(1−2λ)−(1−λ)μ][1−2(1−μ)])/(λ+μ(1−2λ)−(1−μ)[λ+μ(1−2λ)−(1−λ)μ])) ⇒ρ=((1−μ)/(1−λμ))](https://www.tinkutara.com/question/Q30144.png)
Answered by ajfour last updated on 17/Feb/18
![let B be origin, BC^(−) = a^� ,BA^(−) = c^� , CA^(−) = b^� = c^� −a^� BG^(−) =ρ(λa^� )+(1−ρ)c^� =(1−σ)a^� +σ(μc^� ) = η(a^� +εb^� ) =η[a^� +ε(c^� −a^� )] coeff. of a^� is λρ =1−σ = η−εη ...(i) coeff. of c^� is (1−ρ)=σμ = ηε ...(ii) ⇒ 1−ρ = (1−λρ)μ 𝛒 = ((1−𝛍)/(1−𝛌𝛍)) σ=1−λρ = 1−(((λ−λμ)/(1−λμ))) ⇒ 𝛔 = ((1−𝛌)/(1−𝛌𝛍)) adding (i) and (ii) η = λρ+(1−ρ) =1−(1−λ)ρ = 1−(((1−λ)(1−μ))/(1−λμ)) 𝛈 = ((𝛍(1−𝛌)+𝛌(1−𝛍))/(1−𝛌𝛍)) ε = ((1−ρ)/η) = [1−(((1−μ)/(1−λμ)))]×((1−λμ)/(μ(1−λ)+λ(1−μ))) 𝛆 = ((𝛍(1−𝛌))/(𝛍(1−𝛌)+𝛌(1−𝛍))) .](https://www.tinkutara.com/question/Q30150.png)
Commented by mrW2 last updated on 17/Feb/18
