Question Number 30120 by ajfour last updated on 16/Feb/18
Commented by ajfour last updated on 16/Feb/18
$${Determine}\:\boldsymbol{\rho},\:\boldsymbol{\eta},\:\boldsymbol{\sigma},\:\boldsymbol{\epsilon}\:\:\:{in}\:{terms} \\ $$$${of}\:\boldsymbol{\lambda}\:{and}\:\boldsymbol{\mu}\:. \\ $$
Answered by mrW2 last updated on 17/Feb/18
Commented by ajfour last updated on 17/Feb/18
$${Thank}\:{you}\:{Sir}.\:{I}\:{have}\:{solved} \\ $$$${the}\:{vector}\:{way}. \\ $$
Commented by mrW2 last updated on 17/Feb/18
$${maybe}\:{one}\:{can}\:{use}\:{vector}\:{method}\:{to} \\ $$$${get}\:{the}\:{result}\:{more}\:{easily}. \\ $$
Commented by mrW2 last updated on 17/Feb/18
$${let}\:{AB}={c},\:{BC}={a},\:\angle{ABC}=\theta \\ $$$${B}\left(\mathrm{0},\mathrm{0}\right) \\ $$$${D}\left(\lambda{a},\mathrm{0}\right) \\ $$$${C}\left({a},\mathrm{0}\right) \\ $$$${F}\left(\mu{c}\:\mathrm{cos}\:\theta,\mu{c}\:\mathrm{sin}\:\theta\right) \\ $$$${A}\left({c}\:\mathrm{cos}\:\theta,{c}\:\mathrm{sin}\:\theta\right) \\ $$$$ \\ $$$${Eqn}.\:{of}\:{CF}: \\ $$$$\frac{{y}−\mathrm{0}}{{x}−{a}}=\frac{\mu{c}\:\mathrm{sin}\:\theta−\mathrm{0}}{\mu{c}\:\mathrm{cos}\:\theta−{a}} \\ $$$${y}\left(\mu{c}\:\mathrm{cos}\:\theta−{a}\right)=\left({x}−{a}\right)\mu{c}\:\mathrm{sin}\:\theta \\ $$$${Eqn}.\:{of}\:{AD} \\ $$$$\frac{{y}−\mathrm{0}}{{x}−\lambda{a}}=\frac{{c}\:\mathrm{sin}\:\theta−\mathrm{0}}{{c}\:\mathrm{cos}\:\theta−\lambda{a}} \\ $$$${y}\left({c}\:\mathrm{cos}\:\theta−\lambda{a}\right)=\left({x}−\lambda{a}\right){c}\:\mathrm{sin}\:\theta \\ $$$${Point}\:{G}: \\ $$$${y}_{{G}} \left(\mu{c}\:\mathrm{cos}\:\theta−{a}\right)=\left({x}_{{G}} −{a}\right)\mu{c}\:\mathrm{sin}\:\theta \\ $$$${y}_{{G}} \left({c}\:\mathrm{cos}\:\theta−\lambda{a}\right)=\left({x}_{{G}} −\lambda{a}\right){c}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\frac{\mu{c}\:\mathrm{cos}\:\theta−{a}}{{c}\:\mathrm{cos}\:\theta−\lambda{a}}=\frac{\left({x}_{{G}} −{a}\right)\mu}{{x}_{{G}} −\lambda{a}} \\ $$$$\Rightarrow\left(\mu{c}\:\mathrm{cos}\:\theta\:−{a}\right){x}_{{G}} −\lambda\mu{ac}\:\mathrm{cos}\:\theta+\lambda{a}^{\mathrm{2}} =\left(\mu{c}\:\mathrm{cos}\:\theta−\lambda\mu{a}\right){x}_{{G}} −\mu{ac}\:\mathrm{cos}\:\theta+\lambda\mu{a}^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{1}−\lambda\mu\right){x}_{{G}} =\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a} \\ $$$$\Rightarrow{x}_{{G}} =\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}}{\mathrm{1}−\lambda\mu} \\ $$$$\Rightarrow{y}_{{G}} =\frac{{c}\:\mathrm{sin}\:\theta\left({x}_{{G}} −\lambda{a}\right)}{{c}\:\mathrm{cos}\:\theta−\lambda{a}} \\ $$$$\Rightarrow{y}_{{G}} =\frac{{c}\:\mathrm{sin}\:\theta}{{c}\:\mathrm{cos}\:\theta−\lambda{a}}×\left[\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}−\lambda{a}\left(\mathrm{1}−\lambda\mu\right)}{\mathrm{1}−\lambda\mu}\right] \\ $$$$\Rightarrow{y}_{{G}} =\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{sin}\:\theta}{\mathrm{1}−\lambda\mu} \\ $$$$ \\ $$$${Eqn}.\:{of}\:{BE}: \\ $$$$\frac{{y}}{{x}}=\frac{\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{sin}\:\theta}{\mathrm{1}−\lambda\mu}}{\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}}{\mathrm{1}−\lambda\mu}}=\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{sin}\:\theta}{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}} \\ $$$${y}\left[\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}\right]={x}\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{sin}\:\theta \\ $$$${Eqn}.\:{of}\:{AC}: \\ $$$$\frac{{y}−\mathrm{0}}{{x}−{a}}=\frac{{c}\:\mathrm{sin}\:\theta−\mathrm{0}}{{c}\:\mathrm{cos}\:\theta−{a}} \\ $$$${y}\left({c}\:\mathrm{cos}\:\theta−{a}\right)=\left({x}−{a}\right){c}\:\mathrm{sin}\:\theta \\ $$$${Point}\:{E}: \\ $$$${y}_{{E}} \left[\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}\right]={x}_{{E}} \left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{sin}\:\theta \\ $$$${y}_{{E}} \left({c}\:\mathrm{cos}\:\theta−{a}\right)=\left({x}_{{E}} −{a}\right){c}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}}{{c}\:\mathrm{cos}\:\theta−{a}}=\frac{{x}_{{E}} \left(\mathrm{1}−\lambda\right)\mu}{{x}_{{E}} −{a}} \\ $$$$\left[\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}\right]{x}_{{E}} −{a}\left[\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}\right]=\left(\mathrm{1}−\lambda\right)\mu\left({c}\:\mathrm{cos}\:\theta−{a}\right){x}_{{E}} \\ $$$$\left[\left(\mathrm{1}−\lambda\right)\mu{a}+\lambda\left(\mathrm{1}−\mu\right){a}\right]{x}_{{E}} ={a}\left[\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}\right] \\ $$$$\left[\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)\right]{x}_{{E}} =\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a} \\ $$$$\Rightarrow{x}_{{E}} =\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)} \\ $$$$\Rightarrow{y}_{{E}} =\frac{{c}\:\mathrm{sin}\:\theta\left({x}_{{E}} −{a}\right)}{{c}\:\mathrm{cos}\:\theta−{a}}=\frac{{c}\:\mathrm{sin}\:\theta}{{c}\:\mathrm{cos}\:\theta−{a}}×\left[\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}−{a}\lambda−{a}\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}\right] \\ $$$$\Rightarrow{y}_{{E}} =\frac{{c}\:\mathrm{sin}\:\theta}{{c}\:\mathrm{cos}\:\theta−{a}}×\left[\frac{\left(\mathrm{1}−\lambda\right)\mu\left({c}\:\mathrm{cos}\:\theta−{a}\right)}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}\right] \\ $$$$\Rightarrow{y}_{{E}} =\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{sin}\:\theta}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)} \\ $$$$ \\ $$$$\eta=\frac{{x}_{{G}} }{{x}_{{E}} }=\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}}{\mathrm{1}−\lambda\mu}×\frac{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{cos}\:\theta+\lambda\left(\mathrm{1}−\mu\right){a}} \\ $$$$\Rightarrow\eta=\frac{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}{\mathrm{1}−\lambda\mu}=\frac{\lambda+\mu−\mathrm{2}\lambda\mu}{\mathrm{1}−\lambda\mu}\:\:\:…\left({I}\right) \\ $$$$\varepsilon=\frac{{y}_{{E}} }{{y}_{{A}} }=\frac{\left(\mathrm{1}−\lambda\right)\mu{c}\:\mathrm{sin}\:\theta}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}×\frac{\mathrm{1}}{{c}\:\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\varepsilon=\frac{\left(\mathrm{1}−\lambda\right)\mu}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}=\frac{\mu−\lambda\mu}{\lambda+\mu−\mathrm{2}\lambda\mu}\:\:\:\:…\left({II}\right) \\ $$$$ \\ $$$${using}\:{these}\:{two}\:{relations}\:{all}\:{other} \\ $$$${values}\:{can}\:{be}\:{determined}. \\ $$$$\sigma=\frac{\varepsilon+\left(\mathrm{1}−\lambda\right)\left(\mathrm{1}−\mathrm{2}\varepsilon\right)}{\mathrm{1}−\varepsilon\left(\mathrm{1}−\lambda\right)} \\ $$$$\sigma=\frac{\frac{\left(\mathrm{1}−\lambda\right)\mu}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}+\left(\mathrm{1}−\lambda\right)\left(\mathrm{1}−\frac{\mathrm{2}\left(\mathrm{1}−\lambda\right)\mu}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}\right)}{\mathrm{1}−\frac{\left(\mathrm{1}−\lambda\right)\mu}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}\left(\mathrm{1}−\lambda\right)} \\ $$$$\sigma=\frac{\left(\mathrm{1}−\lambda\right)\mu+\left(\mathrm{1}−\lambda\right)\left[\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)−\mathrm{2}\left(\mathrm{1}−\lambda\right)\mu\right]}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)−\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \mu} \\ $$$$\Rightarrow\sigma=\frac{\mathrm{1}−\lambda}{\mathrm{1}−\lambda\mu} \\ $$$$ \\ $$$$\rho=\frac{\left(\mathrm{1}−\mu\right)+\left(\mathrm{1}−\varepsilon\right)\left[\mathrm{1}−\mathrm{2}\left(\mathrm{1}−\mu\right)\right]}{\mathrm{1}−\left(\mathrm{1}−\mu\right)\left(\mathrm{1}−\varepsilon\right)} \\ $$$$\rho=\frac{\left(\mathrm{1}−\mu\right)+\left[\mathrm{1}−\frac{\left(\mathrm{1}−\lambda\right)\mu}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}\right]\left[\mathrm{1}−\mathrm{2}\left(\mathrm{1}−\mu\right)\right]}{\mathrm{1}−\left(\mathrm{1}−\mu\right)\left[\mathrm{1}−\frac{\left(\mathrm{1}−\lambda\right)\mu}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)}\right]} \\ $$$$\rho=\frac{\left(\mathrm{1}−\mu\right)\left[\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)\right]+\left[\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)−\left(\mathrm{1}−\lambda\right)\mu\right]\left[\mathrm{1}−\mathrm{2}\left(\mathrm{1}−\mu\right)\right]}{\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)−\left(\mathrm{1}−\mu\right)\left[\lambda+\mu\left(\mathrm{1}−\mathrm{2}\lambda\right)−\left(\mathrm{1}−\lambda\right)\mu\right]} \\ $$$$\Rightarrow\rho=\frac{\mathrm{1}−\mu}{\mathrm{1}−\lambda\mu} \\ $$
Answered by ajfour last updated on 17/Feb/18