Question Number 30377 by ajfour last updated on 21/Feb/18
Commented by ajfour last updated on 21/Feb/18
$${Given}\:{the}\:{ellipse}\:{touches}\:{parabola} \\ $$$${only}\:{at}\:{vertex}\:{and}\:{lies}\:{within}\:{the} \\ $$$${the}\:{red}\:{line}\:{and}\:{parabola}. \\ $$
Answered by mrW2 last updated on 22/Feb/18
$${Eqn}.\:{of}\:{ellipse}: \\ $$$$\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}{y}}{{x}_{\mathrm{0}} }−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$ \\ $$$${Intersection}\:{with}\:{parabola}: \\ $$$$\frac{{x}_{\mathrm{0}} {y}}{{a}^{\mathrm{2}} }=\mathrm{1}−\left(\frac{\mathrm{2}{y}}{{x}_{\mathrm{0}} }−\mathrm{1}\right)^{\mathrm{2}} =\frac{\mathrm{4}{y}}{{x}_{\mathrm{0}} }\left(\mathrm{1}−\frac{{y}}{{x}_{\mathrm{0}} }\right) \\ $$$${y}\left[\frac{{x}_{\mathrm{0}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{4}}{{x}_{\mathrm{0}} }+\frac{\mathrm{4}{y}}{{x}_{\mathrm{0}} ^{\mathrm{2}} }\right]=\mathrm{0} \\ $$$$\Rightarrow{y}=\mathrm{0} \\ $$$$\Rightarrow\frac{{x}_{\mathrm{0}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{4}}{{x}_{\mathrm{0}} }+\frac{\mathrm{4}{y}}{{x}_{\mathrm{0}} ^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{y}={x}_{\mathrm{0}} −\frac{{x}_{\mathrm{0}} ^{\mathrm{3}} }{\mathrm{4}{a}^{\mathrm{2}} }={x}_{\mathrm{0}} \left(\mathrm{1}−\frac{{x}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right)\overset{!} {=}\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{2}{a}\right)^{\mathrm{2}} ={x}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$\Rightarrow{a}=\frac{{x}_{\mathrm{0}} }{\mathrm{2}} \\ $$$${i}.{e}.\:{the}\:{largest}\:{ellipse}\:{is}\:{a}\:{circle}: \\ $$$$\left(\frac{\mathrm{2}{x}}{{x}_{\mathrm{0}} }\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}{y}}{{x}_{\mathrm{0}} }−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${with}\:{radius}\:\frac{{x}_{\mathrm{0}} }{\mathrm{2}}\:{and}\:{its}\:{area}\:{is}\:\frac{\pi{x}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{4}}. \\ $$
Commented by ajfour last updated on 21/Feb/18
$${Good}\:{way}\:{Sir}.\: \\ $$