Menu Close

Question-30615




Question Number 30615 by Tinkutara last updated on 23/Feb/18
Answered by ajfour last updated on 23/Feb/18
r^� =t^2 i^� +3t^2 j^�   v^� = 2ti^� +6tj^�   a^� =2i^� +6j^�       ⇒    ∣a^� ∣ = (√(40))  a_(tangential) = ((a^� .v^� )/(∣v^� ∣)) = ((40t)/( (√(40))t)) = (√(40))    As      a_(tangential) = ∣a∣    so    only tangential acceleration  is there.
$$\bar {{r}}={t}^{\mathrm{2}} \hat {{i}}+\mathrm{3}{t}^{\mathrm{2}} \hat {{j}} \\ $$$$\bar {{v}}=\:\mathrm{2}{t}\hat {{i}}+\mathrm{6}{t}\hat {{j}} \\ $$$$\bar {{a}}=\mathrm{2}\hat {{i}}+\mathrm{6}\hat {{j}}\:\:\:\:\:\:\Rightarrow\:\:\:\:\mid\bar {{a}}\mid\:=\:\sqrt{\mathrm{40}} \\ $$$${a}_{{tangential}} =\:\frac{\bar {{a}}.\bar {{v}}}{\mid\bar {{v}}\mid}\:=\:\frac{\mathrm{40}{t}}{\:\sqrt{\mathrm{40}}{t}}\:=\:\sqrt{\mathrm{40}}\:\: \\ $$$${As}\:\:\:\:\:\:{a}_{{tangential}} =\:\mid{a}\mid\:\: \\ $$$${so}\:\:\:\:{only}\:{tangential}\:{acceleration} \\ $$$${is}\:{there}. \\ $$
Commented by Tinkutara last updated on 23/Feb/18
Why a_(tangential) = ((a^� .v^� )/(∣v^� ∣))?
$${Why}\:{a}_{{tangential}} =\:\frac{\bar {{a}}.\bar {{v}}}{\mid\bar {{v}}\mid}? \\ $$
Commented by ajfour last updated on 23/Feb/18
acceleration in the direction of  velocity is the tangential acceleration  a_(tangential) = a^� .v^�  = ((a^� .v^� )/(∣v^� ∣))  .
$${acceleration}\:{in}\:{the}\:{direction}\:{of} \\ $$$${velocity}\:{is}\:{the}\:{tangential}\:{acceleration} \\ $$$${a}_{{tangential}} =\:\bar {{a}}.\hat {{v}}\:=\:\frac{\bar {{a}}.\bar {{v}}}{\mid\bar {{v}}\mid}\:\:. \\ $$
Commented by Tinkutara last updated on 23/Feb/18
Thank you very much Sir! I got the answer.

Leave a Reply

Your email address will not be published. Required fields are marked *