Menu Close

Question-30933




Question Number 30933 by ajfour last updated on 28/Feb/18
Answered by mrW2 last updated on 28/Feb/18
Commented by mrW2 last updated on 01/Mar/18
Respect! You can still remember and  find such an old post. I have totally  forgot it.
$${Respect}!\:{You}\:{can}\:{still}\:{remember}\:{and} \\ $$$${find}\:{such}\:{an}\:{old}\:{post}.\:{I}\:{have}\:{totally} \\ $$$${forgot}\:{it}. \\ $$
Commented by mrW2 last updated on 28/Feb/18
ΔABC must be an acute triangle.  ΔPQR has minimum perimeter when  it is the orthic triangle formed by  the feet of altitudes of ΔABC.  a_1 =c cos B  c_2 =a cos B  b′=RP=b cos B=b×((a^2 +c^2 −b^2 )/(2ac))=((b^2 (a^2 +c^2 −b^2 ))/(2abc))  ...  Perimeter of PQR:  U=((a^2 (−a^2 +b^2 +c^2 )+b^2 (a^2 −b^2 +c^2 )+c^2 (a^2 +b^2 −c^2 ))/(2abc))  ⇒U=((2(a^2 b^2 +b^2 c^2 +c^2 a^2 )−(a^4 +b^4 +c^4 ))/(2abc))
$$\Delta{ABC}\:{must}\:{be}\:{an}\:{acute}\:{triangle}. \\ $$$$\Delta{PQR}\:{has}\:{minimum}\:{perimeter}\:{when} \\ $$$${it}\:{is}\:{the}\:{orthic}\:{triangle}\:{formed}\:{by} \\ $$$${the}\:{feet}\:{of}\:{altitudes}\:{of}\:\Delta{ABC}. \\ $$$${a}_{\mathrm{1}} ={c}\:\mathrm{cos}\:{B} \\ $$$${c}_{\mathrm{2}} ={a}\:\mathrm{cos}\:{B} \\ $$$${b}'={RP}={b}\:\mathrm{cos}\:{B}={b}×\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ac}}=\frac{{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{\mathrm{2}{abc}} \\ $$$$… \\ $$$${Perimeter}\:{of}\:{PQR}: \\ $$$${U}=\frac{{a}^{\mathrm{2}} \left(−{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)}{\mathrm{2}{abc}} \\ $$$$\Rightarrow{U}=\frac{\mathrm{2}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)−\left({a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} \right)}{\mathrm{2}{abc}} \\ $$
Commented by ajfour last updated on 01/Mar/18
Thanks Sir, but proof please..
$${Thanks}\:{Sir},\:{but}\:{proof}\:{please}.. \\ $$
Commented by Tinkutara last updated on 01/Mar/18
See Q 14809 and problem 2.15 in the following link https://www.scribd.com/document/372679641/Mathematical-Olympiad-Treasures-extracted
Commented by Tinkutara last updated on 01/Mar/18
��
Commented by ajfour last updated on 01/Mar/18
Really, Sir, thank you both.
$${Really},\:{Sir},\:{thank}\:{you}\:{both}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *