Menu Close

Question-30958




Question Number 30958 by rahul 19 last updated on 01/Mar/18
Commented by rahul 19 last updated on 01/Mar/18
Commented by rahul 19 last updated on 01/Mar/18
sir can u plz explain why f(x)−g(x)=0  has roots α,β.
$${sir}\:{can}\:{u}\:{plz}\:{explain}\:{why}\:{f}\left({x}\right)−{g}\left({x}\right)=\mathrm{0} \\ $$$${has}\:{roots}\:\alpha,\beta. \\ $$
Commented by ajfour last updated on 01/Mar/18
(((x−α_1 )(x−β_1 )(x−γ_1 ))/((x−α_2 )(x−β_2 )(x−γ_2 )))=((linear_1 )/(linear_2 ))   ⇒ α_1 =α_2    and  β_1 =β_2   Then   f(α)=f(β)=0      and  g(α)=g(β)=0  ⇒ f(α)−g(α)=f(β)−g(β)=0  .
$$\frac{\left({x}−\alpha_{\mathrm{1}} \right)\left({x}−\beta_{\mathrm{1}} \right)\left({x}−\gamma_{\mathrm{1}} \right)}{\left({x}−\alpha_{\mathrm{2}} \right)\left({x}−\beta_{\mathrm{2}} \right)\left({x}−\gamma_{\mathrm{2}} \right)}=\frac{{linear}_{\mathrm{1}} }{{linear}_{\mathrm{2}} }\: \\ $$$$\Rightarrow\:\alpha_{\mathrm{1}} =\alpha_{\mathrm{2}} \:\:\:{and}\:\:\beta_{\mathrm{1}} =\beta_{\mathrm{2}} \\ $$$${Then}\:\:\:{f}\left(\alpha\right)={f}\left(\beta\right)=\mathrm{0} \\ $$$$\:\:\:\:{and}\:\:{g}\left(\alpha\right)={g}\left(\beta\right)=\mathrm{0} \\ $$$$\Rightarrow\:{f}\left(\alpha\right)−{g}\left(\alpha\right)={f}\left(\beta\right)−{g}\left(\beta\right)=\mathrm{0}\:\:. \\ $$
Commented by rahul 19 last updated on 01/Mar/18
now it′s clear  :D
$$\mathrm{now}\:\mathrm{it}'{s}\:{clear}\:\::{D}\: \\ $$
Answered by ajfour last updated on 01/Mar/18
((x^3 +(a−10)x^2 −x+a−6)/(x^3 +(a−6)x^2 −x+a−10))  =((x+b)/(x+c))  ⇒ x^4 +(a−10+c)x^3 +[c(a−10)−1]x^2 +(a−6−c)x       +c(a−6) = x^4 +(a−6+b)x^3 +[b(a−6)−1]x^2 +                      +(a−10−b)x+b(a−10)    c(a−10)−1 = b(a−6)−1     ...(i)          c(a−6)=b(a−10)         ...(ii)  ⇒ ((a−10)/(a−6))=((a−6)/(a−10))  or    (a−10)^2 = (a−6)^2              −20a+100 = −12a+36         ⇒  a = 8  .
$$\frac{{x}^{\mathrm{3}} +\left({a}−\mathrm{10}\right){x}^{\mathrm{2}} −{x}+{a}−\mathrm{6}}{{x}^{\mathrm{3}} +\left({a}−\mathrm{6}\right){x}^{\mathrm{2}} −{x}+{a}−\mathrm{10}} \\ $$$$=\frac{{x}+{b}}{{x}+{c}} \\ $$$$\Rightarrow\:{x}^{\mathrm{4}} +\left({a}−\mathrm{10}+{c}\right){x}^{\mathrm{3}} +\left[{c}\left({a}−\mathrm{10}\right)−\mathrm{1}\right]{x}^{\mathrm{2}} +\left({a}−\mathrm{6}−{c}\right){x} \\ $$$$\:\:\:\:\:+{c}\left({a}−\mathrm{6}\right)\:=\:{x}^{\mathrm{4}} +\left({a}−\mathrm{6}+{b}\right){x}^{\mathrm{3}} +\left[{b}\left({a}−\mathrm{6}\right)−\mathrm{1}\right]{x}^{\mathrm{2}} + \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({a}−\mathrm{10}−{b}\right){x}+{b}\left({a}−\mathrm{10}\right) \\ $$$$\:\:{c}\left({a}−\mathrm{10}\right)−\mathrm{1}\:=\:{b}\left({a}−\mathrm{6}\right)−\mathrm{1}\:\:\:\:\:…\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\:{c}\left({a}−\mathrm{6}\right)={b}\left({a}−\mathrm{10}\right)\:\:\:\:\:\:\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow\:\frac{{a}−\mathrm{10}}{{a}−\mathrm{6}}=\frac{{a}−\mathrm{6}}{{a}−\mathrm{10}} \\ $$$${or}\:\:\:\:\left({a}−\mathrm{10}\right)^{\mathrm{2}} =\:\left({a}−\mathrm{6}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−\mathrm{20}{a}+\mathrm{100}\:=\:−\mathrm{12}{a}+\mathrm{36} \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:{a}\:=\:\mathrm{8}\:\:. \\ $$
Commented by rahul 19 last updated on 01/Mar/18
thank u sir!
$${thank}\:{u}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *