Menu Close

Question-31318




Question Number 31318 by ajfour last updated on 06/Mar/18
Commented by ajfour last updated on 06/Mar/18
If each spring has a natural  lengh l then find comression x  in the springs in the situation  depicted in figure above.
$${If}\:{each}\:{spring}\:{has}\:{a}\:{natural} \\ $$$${lengh}\:\boldsymbol{{l}}\:{then}\:{find}\:{comression}\:\boldsymbol{{x}} \\ $$$${in}\:{the}\:{springs}\:{in}\:{the}\:{situation} \\ $$$${depicted}\:{in}\:{figure}\:{above}. \\ $$
Answered by ajfour last updated on 06/Mar/18
let string makes an angle α with  vertical.  let us call     l−x=s  tan α=((((s/( (√3)))))/( (√(l^2 −(s^2 /3)))))  let tension in strings be T .  Tsin α=2kxcos 30°  Tcos α=mg  ⇒  tan α = ((kx(√3))/(mg))  ⇒  x=((mgtan α)/(k(√3)))  ⇒  3kx^2 =m^2 g^2 ((s^2 /(3l^2 −s^2 )))  as  s=l−x  3k(l−s)^2 (3l^2 −s^2 )=m^2 g^2 s^2   s= ?  how to proceed beyond this .?
$${let}\:{string}\:{makes}\:{an}\:{angle}\:\alpha\:{with} \\ $$$${vertical}. \\ $$$${let}\:{us}\:{call}\:\:\:\:\:{l}−{x}={s} \\ $$$$\mathrm{tan}\:\alpha=\frac{\left(\frac{{s}}{\:\sqrt{\mathrm{3}}}\right)}{\:\sqrt{{l}^{\mathrm{2}} −\frac{{s}^{\mathrm{2}} }{\mathrm{3}}}} \\ $$$${let}\:{tension}\:{in}\:{strings}\:{be}\:{T}\:. \\ $$$${T}\mathrm{sin}\:\alpha=\mathrm{2}{kx}\mathrm{cos}\:\mathrm{30}° \\ $$$${T}\mathrm{cos}\:\alpha={mg} \\ $$$$\Rightarrow\:\:\mathrm{tan}\:\alpha\:=\:\frac{{kx}\sqrt{\mathrm{3}}}{{mg}} \\ $$$$\Rightarrow\:\:{x}=\frac{{mg}\mathrm{tan}\:\alpha}{{k}\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\:\:\mathrm{3}{kx}^{\mathrm{2}} ={m}^{\mathrm{2}} {g}^{\mathrm{2}} \left(\frac{{s}^{\mathrm{2}} }{\mathrm{3}{l}^{\mathrm{2}} −{s}^{\mathrm{2}} }\right) \\ $$$${as}\:\:{s}={l}−{x} \\ $$$$\mathrm{3}{k}\left({l}−{s}\right)^{\mathrm{2}} \left(\mathrm{3}{l}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)={m}^{\mathrm{2}} {g}^{\mathrm{2}} {s}^{\mathrm{2}} \\ $$$${s}=\:? \\ $$$${how}\:{to}\:{proceed}\:{beyond}\:{this}\:.? \\ $$
Commented by mrW2 last updated on 07/Mar/18
let λ=(s/l)<1  3kl^2 (1−λ)^2 (3−λ^2 )=m^2 g^2 λ^2   (1−λ)^2 (3−λ^2 )=(1/(3k))(((mg)/l))^2 λ^2   ((1/λ)−1)^2 (3−λ^2 )=c  it seems to be difficult to find a  formula for λ in terms of c.
$${let}\:\lambda=\frac{{s}}{{l}}<\mathrm{1} \\ $$$$\mathrm{3}{kl}^{\mathrm{2}} \left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \left(\mathrm{3}−\lambda^{\mathrm{2}} \right)={m}^{\mathrm{2}} {g}^{\mathrm{2}} \lambda^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \left(\mathrm{3}−\lambda^{\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{3}{k}}\left(\frac{{mg}}{{l}}\right)^{\mathrm{2}} \lambda^{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{1}}{\lambda}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{3}−\lambda^{\mathrm{2}} \right)={c} \\ $$$${it}\:{seems}\:{to}\:{be}\:{difficult}\:{to}\:{find}\:{a} \\ $$$${formula}\:{for}\:\lambda\:{in}\:{terms}\:{of}\:{c}. \\ $$
Commented by ajfour last updated on 07/Mar/18
Thanks Sir, nice transformation.
$${Thanks}\:{Sir},\:{nice}\:{transformation}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *