Menu Close

Question-31792




Question Number 31792 by ajfour last updated on 14/Mar/18
Commented by ajfour last updated on 14/Mar/18
Commented by ajfour last updated on 15/Mar/18
T(cos β−cos α)+N_1 sin α−N_2 sin β=MA  ......(i)  mgsin α+mAcos α−T=ma  T+mAcos β−mgsin β=ma  ⇒ 2T=mg(sin α+sin β)+mA(cos α−cos β)  ......(ii)  N_1 =mgcos α−mAsin α   ...(iii)  N_2 =mgcos β+mAsin β    ...(iv)  using (ii), (iii), and (iv) in (i) :  [mg(sin α+sin β)+mA(cos α−cos β)][cos β−cos α]  +2(mgcos α−mAsin α)sin α  −2(mgcos β+mAsin β)sin β=2MA  A=((mg[(sin α+sin β)(cos β−cos α)−2sin αcos α+2sin βcos β ])/(2M+m[(cos β−cos α)^2 +2(sin^2 α+sin^2 β)]))   A=((mg sin(𝛂−𝛃)[1−3cos(𝛂+𝛃)])/(2M+m[4−(cos𝛂+cos𝛃)^2 ])) .
T(cosβcosα)+N1sinαN2sinβ=MA(i)mgsinα+mAcosαT=maT+mAcosβmgsinβ=ma2T=mg(sinα+sinβ)+mA(cosαcosβ)(ii)N1=mgcosαmAsinα(iii)N2=mgcosβ+mAsinβ(iv)using(ii),(iii),and(iv)in(i):[mg(sinα+sinβ)+mA(cosαcosβ)][cosβcosα]+2(mgcosαmAsinα)sinα2(mgcosβ+mAsinβ)sinβ=2MAA=mg[(sinα+sinβ)(cosβcosα)2sinαcosα+2sinβcosβ]2M+m[(cosβcosα)2+2(sin2α+sin2β)]A=mgsin(αβ)[13cos(α+β)]2M+m[4(cosα+cosβ)2].
Commented by ajfour last updated on 15/Mar/18
Sir, kindly solve and help checking  my solution.
Sir,kindlysolveandhelpcheckingmysolution.
Commented by mrW2 last updated on 15/Mar/18
nice and right solution sir!
niceandrightsolutionsir!

Leave a Reply

Your email address will not be published. Required fields are marked *