Menu Close

Question-32376




Question Number 32376 by rsen3579@gmail.com last updated on 24/Mar/18
Commented by abdo imad last updated on 24/Mar/18
we have e^x  ∼1+x +(x^2 /2) for x∈V(0) alsowehave  e^(sinx)  =e^(x−(x^3 /(3!)) +0(x^5 ))  ∼1+x −(x^3 /(3!)) ⇒ e^x  −e^(sinx)  ∼(x^3 /(3!))  sinx ∼ x−(x^3 /(3!))  ⇒ x−sinx ∼ (x^3 /(3!)) ⇒   ((e^x  −e^(sinx) )/(x−sinx)) ∼  1  ⇒ lim_(x→o)   ((e^x  −e^(sinx) )/(x −sinx)) =1  .
wehaveex1+x+x22forxV(0)alsowehaveesinx=exx33!+0(x5)1+xx33!exesinxx33!sinxxx33!xsinxx33!exesinxxsinx1limxoexesinxxsinx=1.
Answered by $@ty@m last updated on 24/Mar/18
lim_(x→0)    ((e^x −e^(sin x) )/(x−sin x))  lim_(x→0)    (((1+x+(x^2 /(2!))+...) −(1+sin x+((sin^2 x)/(2!))+...))/(x−sin x))  lim_(x→0)    (((x−sin x)+(1/(2!))(x^2 −sin^2 x)+.... )/(x−sin x))  lim_(x→0)    (((x−sin x){1+(1/(2!))(x+sinx)+....} )/(x−sin x))  lim_(x→0) {1+(1/(2!))(x+sinx)+....}  =1
limx0exesinxxsinxlimx0(1+x+x22!+)(1+sinx+sin2x2!+)xsinxlimx0(xsinx)+12!(x2sin2x)+.xsinxlimx0(xsinx){1+12!(x+sinx)+.}xsinxlimx0{1+12!(x+sinx)+.}=1
Answered by saru53424@gmail.com last updated on 24/Mar/18
Answered by saru53424@gmail.com last updated on 24/Mar/18
Answered by saru53424@gmail.com last updated on 24/Mar/18
x+1=0
x+1=0

Leave a Reply

Your email address will not be published. Required fields are marked *