Menu Close

Question-32508




Question Number 32508 by Tinkutara last updated on 26/Mar/18
Answered by MJS last updated on 27/Mar/18
there are 2 tangents of different  lengths but none of these answers  fit any of them...  ellipse: y=±(b/a)(√(a^2 −x^2 ))  tangent in point  ((o),((±(b/a)(√(a^2 −o^2 )))) ):  t: y=∓((bo)/(a(√(a^2 −o^2 ))))×x±((ab)/( (√(a^2 −o^2 ))))  tangents through given point  P= ((p),(q) ): solve above equations  for o with x=p∧y=q  in this case:  a=(√3); b=2; p=3; q=−5  −5=∓((2o)/( (√3)(√(3−o^2 ))))×3±((2(√3))/( (√(3−o^2 ))))  o_(1 (y<0)) =((12)/(37))−((15(√(11)))/(37))  o_(2 (y>0)) =((12)/(37))+((15(√(11)))/(37))  the tangents:  t_1 : y=−((5/2)−((√(11))/2))×x+((5/2)−((3(√(11)))/2))  t_2 : y=−((5/2)+((√(11))/2))×x+((5/2)+((3(√(11)))/2))  the 2 points of the ellipse are:  O_1 = (((((12)/(37))−((15(√(11)))/(37)))),((−((20)/(37))−((12(√(11)))/(37)))) )  O_2 = (((((12)/(37))+((15(√(11)))/(37)))),((−((20)/(37))+((12(√(11)))/(37)))) )  distances to P= ((3),((−5)) )  ∣P−O_1 ∣=(3/(37))(√(55(83−2(√(11)))))≈5.25  ∣P−O_2 ∣=(3/(37))(√(55(83+2(√(11)))))≈5.69  the options are:  ((√(17))/2)≈2.06  ((√(33))/2)≈2.87  ((√(37))/2)≈3.04  ((√(19))/2)≈2.18
$$\mathrm{there}\:\mathrm{are}\:\mathrm{2}\:\mathrm{tangents}\:\mathrm{of}\:\mathrm{different} \\ $$$$\mathrm{lengths}\:\mathrm{but}\:\mathrm{none}\:\mathrm{of}\:\mathrm{these}\:\mathrm{answers} \\ $$$$\mathrm{fit}\:\mathrm{any}\:\mathrm{of}\:\mathrm{them}… \\ $$$$\mathrm{ellipse}:\:{y}=\pm\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$$\mathrm{tangent}\:\mathrm{in}\:\mathrm{point}\:\begin{pmatrix}{{o}}\\{\pm\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} −{o}^{\mathrm{2}} }}\end{pmatrix}: \\ $$$${t}:\:{y}=\mp\frac{{bo}}{{a}\sqrt{{a}^{\mathrm{2}} −{o}^{\mathrm{2}} }}×{x}\pm\frac{{ab}}{\:\sqrt{{a}^{\mathrm{2}} −{o}^{\mathrm{2}} }} \\ $$$$\mathrm{tangents}\:\mathrm{through}\:\mathrm{given}\:\mathrm{point} \\ $$$${P}=\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}:\:\mathrm{solve}\:\mathrm{above}\:\mathrm{equations} \\ $$$$\mathrm{for}\:{o}\:\mathrm{with}\:{x}={p}\wedge{y}={q} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}: \\ $$$${a}=\sqrt{\mathrm{3}};\:{b}=\mathrm{2};\:{p}=\mathrm{3};\:{q}=−\mathrm{5} \\ $$$$−\mathrm{5}=\mp\frac{\mathrm{2o}}{\:\sqrt{\mathrm{3}}\sqrt{\mathrm{3}−{o}^{\mathrm{2}} }}×\mathrm{3}\pm\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}−{o}^{\mathrm{2}} }} \\ $$$${o}_{\mathrm{1}\:\left({y}<\mathrm{0}\right)} =\frac{\mathrm{12}}{\mathrm{37}}−\frac{\mathrm{15}\sqrt{\mathrm{11}}}{\mathrm{37}} \\ $$$${o}_{\mathrm{2}\:\left({y}>\mathrm{0}\right)} =\frac{\mathrm{12}}{\mathrm{37}}+\frac{\mathrm{15}\sqrt{\mathrm{11}}}{\mathrm{37}} \\ $$$$\mathrm{the}\:\mathrm{tangents}: \\ $$$${t}_{\mathrm{1}} :\:{y}=−\left(\frac{\mathrm{5}}{\mathrm{2}}−\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)×{x}+\left(\frac{\mathrm{5}}{\mathrm{2}}−\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{2}}\right) \\ $$$${t}_{\mathrm{2}} :\:{y}=−\left(\frac{\mathrm{5}}{\mathrm{2}}+\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)×{x}+\left(\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{2}}\right) \\ $$$$\mathrm{the}\:\mathrm{2}\:\mathrm{points}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ellipse}\:\mathrm{are}: \\ $$$${O}_{\mathrm{1}} =\begin{pmatrix}{\frac{\mathrm{12}}{\mathrm{37}}−\frac{\mathrm{15}\sqrt{\mathrm{11}}}{\mathrm{37}}}\\{−\frac{\mathrm{20}}{\mathrm{37}}−\frac{\mathrm{12}\sqrt{\mathrm{11}}}{\mathrm{37}}}\end{pmatrix} \\ $$$${O}_{\mathrm{2}} =\begin{pmatrix}{\frac{\mathrm{12}}{\mathrm{37}}+\frac{\mathrm{15}\sqrt{\mathrm{11}}}{\mathrm{37}}}\\{−\frac{\mathrm{20}}{\mathrm{37}}+\frac{\mathrm{12}\sqrt{\mathrm{11}}}{\mathrm{37}}}\end{pmatrix} \\ $$$$\mathrm{distances}\:\mathrm{to}\:{P}=\begin{pmatrix}{\mathrm{3}}\\{−\mathrm{5}}\end{pmatrix} \\ $$$$\mid{P}−\mathrm{O}_{\mathrm{1}} \mid=\frac{\mathrm{3}}{\mathrm{37}}\sqrt{\mathrm{55}\left(\mathrm{83}−\mathrm{2}\sqrt{\mathrm{11}}\right)}\approx\mathrm{5}.\mathrm{25} \\ $$$$\mid{P}−\mathrm{O}_{\mathrm{2}} \mid=\frac{\mathrm{3}}{\mathrm{37}}\sqrt{\mathrm{55}\left(\mathrm{83}+\mathrm{2}\sqrt{\mathrm{11}}\right)}\approx\mathrm{5}.\mathrm{69} \\ $$$$\mathrm{the}\:\mathrm{options}\:\mathrm{are}: \\ $$$$\frac{\sqrt{\mathrm{17}}}{\mathrm{2}}\approx\mathrm{2}.\mathrm{06} \\ $$$$\frac{\sqrt{\mathrm{33}}}{\mathrm{2}}\approx\mathrm{2}.\mathrm{87} \\ $$$$\frac{\sqrt{\mathrm{37}}}{\mathrm{2}}\approx\mathrm{3}.\mathrm{04} \\ $$$$\frac{\sqrt{\mathrm{19}}}{\mathrm{2}}\approx\mathrm{2}.\mathrm{18} \\ $$
Commented by Tinkutara last updated on 27/Mar/18
Commented by Tinkutara last updated on 27/Mar/18
@MJS you are right. Graphing calculator confirms your answer. Thank you Sir! ��������

Leave a Reply

Your email address will not be published. Required fields are marked *