Menu Close

Question-32985




Question Number 32985 by soufiane zarik last updated on 08/Apr/18
Answered by MJS last updated on 08/Apr/18
a_1 =1  a_2 =a_(1+1) =2a_1 +1=3  a_3 =a_(1+2) =a_1 +a_2 +2=6  a_4 =a_(1+3) =a_1 +a_3 +3=10  (a_4 =a_(2+2) =2a_2 +4=10)  a_5 =a_(1+4) =a_1 +a_4 +4=15  (a_5 =a_2 +a_3 =a_2 +a_3 +6=15)  a_n =a_1 +a_(n−1) +1×(n−1)=a_(n−1) +n  a_n =Σ_(i=1) ^n i=(n/2)(n+1)  proof:  a_(m+n) =((m+n)/2)(m+n+1)=  =((m^2 +2mn+n^2 +m+n)/2)=  =((m^2 +m)/2)+((n^2 +n)/2)+mn=  =(m/2)(m+1)+(n/2)(n+1)+mn=  =a_m +a_n +mn  a_(100) =5050
a1=1a2=a1+1=2a1+1=3a3=a1+2=a1+a2+2=6a4=a1+3=a1+a3+3=10(a4=a2+2=2a2+4=10)a5=a1+4=a1+a4+4=15(a5=a2+a3=a2+a3+6=15)an=a1+an1+1×(n1)=an1+nan=ni=1i=n2(n+1)proof:am+n=m+n2(m+n+1)==m2+2mn+n2+m+n2==m2+m2+n2+n2+mn==m2(m+1)+n2(n+1)+mn==am+an+mna100=5050
Commented by soufiane zarik last updated on 08/Apr/18
thank you very much sir !
thankyouverymuchsir!

Leave a Reply

Your email address will not be published. Required fields are marked *