Question Number 32999 by artibunja last updated on 09/Apr/18
Commented by prof Abdo imad last updated on 09/Apr/18
$$\Leftrightarrow\:\:\:\left(\:\:\frac{{ln}\left({x}+\mathrm{1}\right)}{{ln}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)}\right)^{−\mathrm{1}} \:>\mathrm{1}\:\Leftrightarrow\:\left(\:\frac{{ln}\left({x}+\mathrm{1}\right)}{−{ln}\left(\mathrm{3}\right)}\right)^{−\mathrm{1}} \:>\mathrm{1}\:\:{with}\:{x}>−\mathrm{1} \\ $$$$\Leftrightarrow\:−\:\frac{{ln}\mathrm{3}}{{ln}\left({x}+\mathrm{1}\right)}\:>\:\mathrm{1}\:\Leftrightarrow\:\:\frac{{ln}\mathrm{3}}{{ln}\left({x}+\mathrm{1}\right)}\:<−\mathrm{1} \\ $$$$\Leftrightarrow\:\:\frac{{ln}\mathrm{3}}{{ln}\left({x}+\mathrm{1}\right)}\:+\mathrm{1}\:<\mathrm{0}\:\Leftrightarrow\:\:\frac{{ln}\left({x}+\mathrm{1}\right)\:+{ln}\left(\mathrm{3}\right)}{{ln}\left({x}+\mathrm{1}\right)}\:<\mathrm{0} \\ $$$${case}\mathrm{1}\:\:{x}>\mathrm{0}\:\Rightarrow{x}+\mathrm{1}>\mathrm{1}\Rightarrow{ln}\left({x}+\mathrm{1}\right)\:>\mathrm{0}\:\:\left({e}\right)\:\Leftrightarrow \\ $$$$\:{ln}\left(\mathrm{3}{x}+\mathrm{3}\right)\:<\mathrm{0}\:\:\:\Leftrightarrow\:\:\:\mathrm{0}<\:\mathrm{3}{x}+\mathrm{3}<\mathrm{1}\:\Rightarrow−\mathrm{1}<\:{x}\:<\:\frac{−\mathrm{2}}{\mathrm{3}} \\ $$$${but}\:\:{x}>\mathrm{0}\:{so}\:\:{no}\:{solution} \\ $$$${case}\:\mathrm{2}\:−\mathrm{1}<{x}<\mathrm{0}\:\:\left({e}\right)\Leftrightarrow\:{ln}\left(\mathrm{3}{x}+\mathrm{3}\right)>\mathrm{0}\:\:\Leftrightarrow\mathrm{3}{x}+\mathrm{3}>\mathrm{1} \\ $$$$\left.\Leftrightarrow\:{x}\:>−\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow\:\:{S}_{\mathrm{2}} \:=\right]−\frac{\mathrm{2}}{\mathrm{3}},\mathrm{0}\left[\:\Rightarrow\:{S}\:=\:{S}_{\mathrm{1}} \cup{S}_{\mathrm{2}} \right. \\ $$$$\left.=\right]−\frac{\mathrm{2}}{\mathrm{3}},\mathrm{0}\left[\:.\right. \\ $$$$ \\ $$
Answered by artibunja last updated on 09/Apr/18