Question Number 33628 by naka3546 last updated on 20/Apr/18
Commented by MJS last updated on 20/Apr/18
$$\mathrm{this}\:\mathrm{seems}\:\mathrm{to}\:\mathrm{be}\:=\mathrm{0} \\ $$
Commented by naka3546 last updated on 21/Apr/18
$${how}\:\:{to}\:{get}\:\:\mathrm{0} \\ $$
Commented by prof Abdo imad last updated on 21/Apr/18
$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{4}} \:\:\frac{{ln}\left({x}\right)}{\:\sqrt{\mathrm{4}{x}−{x}^{\mathrm{2}} }}\:{dx}\:\:{we}\:{have} \\ $$$$−{x}^{\mathrm{2}} \:+\mathrm{4}{x}\:=−\left({x}^{\mathrm{2}} −\mathrm{4}{x}\right)\:=−\left({x}^{\mathrm{2}} \:−\mathrm{4}{x}\:+\mathrm{4}\:−\mathrm{4}\right) \\ $$$$=−\left({x}−\mathrm{2}\right)^{\mathrm{2}} \:+\mathrm{4}\:=\mathrm{4}\:−\left({x}−\mathrm{2}\right)^{\mathrm{2}} \:\:{ch}.\:{x}−\mathrm{2}\:=\mathrm{2}\:{sint}\:{give} \\ $$$${I}\:=\:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{ln}\left(\mathrm{2}+\mathrm{2}{sint}\right)}{\mathrm{2}\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {t}}}\:\mathrm{2}\:{cost}\:{dt} \\ $$$$=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{2}+\mathrm{2}{sint}\right){dt} \\ $$$$=\pi\:{ln}\left(\mathrm{2}\right)\:+\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}+{sint}\right){dt}\:\:{let}\:{find}\:{the}\:{value} \\ $$$${of}\:{this}\:{integral}\:{let}\:\:{f}\left({x}\right)=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}+{xsint}\right){dt} \\ $$$${with}\:\mid{x}\mid\leqslant\mathrm{1}\:{and}\:{x}\neq\mathrm{0} \\ $$$${f}^{'} \left({x}\right)\:=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sint}}{\mathrm{1}+{xsint}}{dt} \\ $$$$=\frac{\mathrm{1}}{{x}}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{xsint}\:−\mathrm{1}}{\mathrm{1}+{xsint}}{dt}\:=\frac{\pi}{{x}}\:−\frac{\mathrm{1}}{{x}}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{1}+{x}\:{sint}} \\ $$$${ch}\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)\:={u}\:{give} \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\mathrm{1}+{x}\:{sint}}\:=\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\mathrm{1}+{x}\:\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\mathrm{2}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} \:+\mathrm{2}{xu}}\:=\:\mathrm{2}\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\mathrm{2}{xu}\:+\mathrm{1}} \\ $$$$=\mathrm{2}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\:\frac{{du}}{\left({u}+{x}\right)^{\mathrm{2}} \:+\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:\left({ch}.\:{u}+{x}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}\:\alpha\right) \\ $$$$=\:\mathrm{2}\:\int_{\frac{{x}−\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} ^{\frac{{x}+\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} \:\:\:\:\:\:\:\:\:\:\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\:\mathrm{1}+\alpha^{\mathrm{2}} \right)}{d}\alpha \\ $$$$=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\:\:\int_{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}}}} \:\:\frac{{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\left[{arctan}\left(\alpha\right)\right]_{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}}}} \\ $$$$=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\left({arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}}}\right)\:+{arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\left.\mathrm{1}+{x}\right)}}\right)\right) \\ $$$$=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\left(\:\pi\:−{arctan}\left(\sqrt{\left.\mathrm{1}−{x}\right)}\:−{arctan}\left(\sqrt{\mathrm{1}+{x}}\right)\right)\right. \\ $$$$=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:−\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\left(\:{arctan}\left(\sqrt{\left.\mathrm{1}−{x}\right)}\:+{arctan}\left(\sqrt{\mathrm{1}+{x}}\right)\right)\right. \\ $$$$…{be}\:{continued}…. \\ $$
Commented by prof Abdo imad last updated on 21/Apr/18
$${let}\:{put}\:{I}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{sinx}\right){dx} \\ $$$${J}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}−{sinx}\right){dx}\:\:.{ch}.{x}=−{t}\:\Rightarrow \\ $$$${J}\:=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{sint}\right){dt}\:={I}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right){dx}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{2}{ln}\left({cosx}\right){dx} \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({cosx}\right){dx}\:=\:\mathrm{4}\left(−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2}\right) \\ $$$$=\:−\mathrm{2}\pi\:{ln}\left(\mathrm{2}\right)\:\Rightarrow\:{I}\:=−\pi\:{ln}\left(\mathrm{2}\right)\:{so} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \:\:\:\:\frac{{ln}\left({x}\right)}{\:\sqrt{−{x}^{\mathrm{2}} \:+\mathrm{4}{x}}}\:{dx}\:\:=\:\pi\:{ln}\left(\mathrm{2}\right)\:−\pi{ln}\left(\mathrm{2}\right)\:=\mathrm{0}\:. \\ $$