Question Number 33629 by naka3546 last updated on 20/Apr/18
Commented by math khazana by abdo last updated on 22/Apr/18
$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{a}^{\mathrm{2}} {tan}^{\mathrm{2}} {x}}\:\:.{changement} \\ $$$${tanx}\:={t}\:{give}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{a}^{\mathrm{2}} {t}^{\mathrm{2}} }\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{2}{I}\:\:=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{2}} {t}^{\mathrm{2}} \right)}\:{let}\:{introduce}\:{the} \\ $$$${complex}\:{function}\:\varphi\left({z}\right)\:=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{2}} {z}^{\mathrm{2}} \right)} \\ $$$${let}\:{suppose}\:{a}\neq\mathrm{0}\:{we}\:{have} \\ $$$$\varphi\left({z}\right)\:=\:\:\frac{\mathrm{1}}{\left.\left({z}−{i}\right)\left({z}+{i}\right)\left(\:{az}−{i}\right)−{az}+{i}\right)} \\ $$$$=\:\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left({z}−{i}\right)\left({z}+{i}\right)\left({z}−\frac{{i}}{{a}}\right)\left({z}\:+\frac{{i}}{{a}}\right)}\:{so}\:{the}\:{poles}\:{of}\:\varphi \\ $$$${are}\:{i},−{i},\frac{{i}}{{a}},−\frac{{i}}{{a}} \\ $$$${case}\mathrm{1}\:\:{a}>\mathrm{0} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left(\:{Res}\left(\varphi,{i}\right)\:+{Res}\left(\varphi,\frac{{i}}{{a}}\right)\right) \\ $$$${Res}\left(\varphi,{i}\right)\:=\:\:\:\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)} \\ $$$${Res}\left(\varphi,\:\frac{{i}}{{a}}\right)\:=\:\:\:\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} \frac{{i}}{{a}}\left(\mathrm{1}+\left(\frac{{i}}{{a}}\right)^{\mathrm{2}} \right)}\:=\:\:\frac{\mathrm{1}}{\mathrm{2}{ia}\left(\mathrm{1}−\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\right)}\:=\:\frac{{a}^{\mathrm{2}} }{\mathrm{2}{ia}\left({a}^{\mathrm{2}} −\mathrm{1}\right)}=\frac{{a}}{\mathrm{2}{i}\left({a}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\:\mathrm{2}{i}\pi\left(\:\:\:\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\:−\frac{{a}}{\mathrm{2}{i}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\right) \\ $$$$=\:\frac{\pi}{\mathrm{1}−{a}^{\mathrm{2}} }\:\:−\frac{\mathrm{2}\pi{a}}{\mathrm{1}−{a}^{\mathrm{2}} }\:=\:\frac{\pi}{\mathrm{1}−{a}^{\mathrm{2}} }\left(\mathrm{1}−{a}\right)\:=\:\frac{\pi}{\mathrm{1}+{a}} \\ $$
Commented by math khazana by abdo last updated on 22/Apr/18
$$\mathrm{2}{I}=\:\frac{\pi}{\mathrm{1}+{a}}\:\Rightarrow\:{I}\:\:=\frac{\pi}{\mathrm{2}\left(\mathrm{1}+{a}\right)} \\ $$$${case}\mathrm{2}\:\:{a}<\mathrm{0} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:\:=\mathrm{2}{i}\pi\left(\:{Res}\left(\varphi,{i}\right)\:+{Res}\left(\varphi,−\frac{{i}}{{a}}\right)\right) \\ $$$${Res}\left(\varphi,−\frac{{i}}{{a}}\right)\:=\:\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left(−\mathrm{2}\frac{{i}}{{a}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\right)} \\ $$$$=\:\:\frac{{a}^{\mathrm{2}} \:}{−\mathrm{2}{ia}\left({a}^{\mathrm{2}} \:−\mathrm{1}\right)}\:=\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{2}{ia}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\:=\:\frac{{a}}{\mathrm{2}{i}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left(\:\:\:\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\:\:+\:\:\frac{{a}}{\mathrm{2}{i}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\right) \\ $$$$=\:\frac{\pi}{\mathrm{1}−{a}^{\mathrm{2}} }\:\:+\frac{\pi{a}}{\mathrm{1}−{a}^{\mathrm{2}} }\:=\:\frac{\pi}{\mathrm{1}−{a}^{\mathrm{2}} }\left(\mathrm{1}+{a}\right)\:=\:\frac{\pi}{\mathrm{1}−{a}}\:\Rightarrow \\ $$$${I}\:=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}−{a}\right)}\:\:{but}\:{we}\:{must}\:{study}\:{the}\:{specials}?{cases} \\ $$$${a}=\overset{−} {+}\mathrm{1}\:\:{and}\:{a}=\mathrm{0}\:. \\ $$
Answered by sma3l2996 last updated on 21/Apr/18
$${A}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{dx}}{\mathrm{1}+{a}^{\mathrm{2}} {tan}^{\mathrm{2}} {x}} \\ $$$${let}\:\:{t}={atanx}\Rightarrow{dx}=\frac{{adt}}{{a}^{\mathrm{2}} +{t}^{\mathrm{2}} } \\ $$$${A}={a}\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\left({a}^{\mathrm{2}} +{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} +{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}=\frac{{kt}+{z}}{{a}^{\mathrm{2}} +{t}^{\mathrm{2}} }+\frac{{rt}+{d}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${with}\:\:{k}={r}=\mathrm{0}\:\:{and}\:\:{d}=−{z}=\frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$${so}\:\:{A}=\frac{{a}}{{a}^{\mathrm{2}} −\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }−\frac{\mathrm{1}}{{a}^{\mathrm{2}} +{t}^{\mathrm{2}} }\right){dt} \\ $$$$=\frac{{a}}{{a}^{\mathrm{2}} −\mathrm{1}}\left(\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{{a}^{\mathrm{2}} \left(\mathrm{1}+\left(\frac{{t}}{{a}}\right)^{\mathrm{2}} \right)}\right) \\ $$$$=\frac{{a}}{{a}^{\mathrm{2}} −\mathrm{1}}\left[{tan}^{−\mathrm{1}} {t}\right]_{\mathrm{0}} ^{\infty} −\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} −\mathrm{1}\right)}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+\left(\frac{{t}}{{a}}\right)^{\mathrm{2}} }{d}\left(\frac{{t}}{{a}}\right) \\ $$$$=\frac{{a}\pi}{\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{1}\right)}−\frac{\pi}{\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{1}\right)}=\frac{\pi}{\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{1}\right)}\left({a}−\mathrm{1}\right) \\ $$$${A}=\frac{\pi}{\mathrm{2}\left({a}+\mathrm{1}\right)} \\ $$