Menu Close

Question-33927




Question Number 33927 by Tinkutara last updated on 27/Apr/18
Commented by Tinkutara last updated on 27/Apr/18
Why here x is substituted x=((x+y)/( (√2)))?
$${Why}\:{here}\:{x}\:{is}\:{substituted}\:{x}=\frac{{x}+{y}}{\:\sqrt{\mathrm{2}}}? \\ $$
Commented by Tinkutara last updated on 28/Apr/18
But if axes are rotated by θ anticlockwise,  then (x,y) becomes (Xcos θ−Ysin θ,  Xsin θ+Ycos θ)  so we should substitute x=((X−Y)/( (√2)))  Please correct me.
$${But}\:{if}\:{axes}\:{are}\:{rotated}\:{by}\:\theta\:{anticlockwise}, \\ $$$${then}\:\left({x},{y}\right)\:{becomes}\:\left({X}\mathrm{cos}\:\theta−{Y}\mathrm{sin}\:\theta,\right. \\ $$$$\left.{X}\mathrm{sin}\:\theta+{Y}\mathrm{cos}\:\theta\right) \\ $$$${so}\:{we}\:{should}\:{substitute}\:{x}=\frac{{X}−{Y}}{\:\sqrt{\mathrm{2}}} \\ $$$${Please}\:{correct}\:{me}. \\ $$
Commented by MJS last updated on 27/Apr/18
it′s a rotation  x′=x∙cos α−y∙sin α  y′=x∙sin α+y∙cos α
$$\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{rotation} \\ $$$${x}'={x}\centerdot\mathrm{cos}\:\alpha−{y}\centerdot\mathrm{sin}\:\alpha \\ $$$${y}'={x}\centerdot\mathrm{sin}\:\alpha+{y}\centerdot\mathrm{cos}\:\alpha \\ $$
Commented by MJS last updated on 28/Apr/18
axes are rotated clockwise here
$$\mathrm{axes}\:\mathrm{are}\:\mathrm{rotated}\:\mathrm{clockwise}\:\mathrm{here} \\ $$
Commented by Tinkutara last updated on 28/Apr/18
Why?
Commented by MJS last updated on 28/Apr/18
I don′t know, it says this: “...45° in clockwise  direction”
$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know},\:\mathrm{it}\:\mathrm{says}\:\mathrm{this}:\:“…\mathrm{45}°\:\mathrm{in}\:\mathrm{clockwise} \\ $$$$\mathrm{direction}'' \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *