Menu Close

Question-34115




Question Number 34115 by tanmay.chaudhury50@gmail.com last updated on 30/Apr/18
Commented by abdo mathsup 649 cc last updated on 03/May/18
we have   forf(t)=arctant  f^′ (t) = (1/(1+t^2 ))  with −1<t<1⇒f^′ (x)=Σ_(n=0) ^∞ (−1)^n t^(2n)   ⇒f(t)= Σ_(n=0) ^∞ (−1)^n  (t^(2n+1) /(2n+1)) ⇒for −(π/4)<θ<(π/4)  f(tanθ)= θ = Σ_(n=0) ^∞  (−1)^n  (((tanθ)^(2n+1) )/(2n+1))  =tanθ −(1/3)(tanθ)^3   +(1/5) (tanθ)^5  +....
$${we}\:{have}\:\:\:{forf}\left({t}\right)={arctant} \\ $$$${f}^{'} \left({t}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:{with}\:−\mathrm{1}<{t}<\mathrm{1}\Rightarrow{f}^{'} \left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {t}^{\mathrm{2}{n}} \\ $$$$\Rightarrow{f}\left({t}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\:\Rightarrow{for}\:−\frac{\pi}{\mathrm{4}}<\theta<\frac{\pi}{\mathrm{4}} \\ $$$${f}\left({tan}\theta\right)=\:\theta\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\frac{\left({tan}\theta\right)^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$={tan}\theta\:−\frac{\mathrm{1}}{\mathrm{3}}\left({tan}\theta\right)^{\mathrm{3}} \:\:+\frac{\mathrm{1}}{\mathrm{5}}\:\left({tan}\theta\right)^{\mathrm{5}} \:+…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *