Menu Close

Question-34117




Question Number 34117 by tanmay.chaudhury50@gmail.com last updated on 30/Apr/18
Commented by abdo imad last updated on 01/May/18
let put f(x)=((sinθ)/(x^2  −2xcosθ +1))  poles of f(x)?  x^2 −2xcosθ +1=0   Δ^′ =cos^2 θ −1 =−sin^2 θ =(isinθ)^2   x_1 =cosθ +isinθ =e^(iθ)   and x_2 =e^(−iθ)  ⇒  f(x) = ((sinθ)/((x−e^(iθ) )(x−e^(−iθ) ))) =sinθ( (1/(x−e^(iθ) )) −(1/(x −e^(−iθ) ))).(1/(2isinθ))  =(1/(2i))(  ((−1)/(e^(iθ)  −x)) +(1/(e^(−iθ)  −x)))  =(1/(2i))( ((−e^(−iθ) )/(1−xe^(−iθ) ))  + (e^(iθ) /(1−x e^(iθ) )))  =(1/(2i))(  e^(iθ) Σ_(n=0) ^∞  x^n  e^(inθ)   −e^(−iθ)  Σ_(n=0) ^∞  x^n  e^(−inθ) )  =(1/(2i))(  Σ_(n=0) ^∞  e^(i(n+1)θ)  x^n   −Σ_(n=0) ^∞  e^(−i(n+1)θ) x^n )  =(1/(2i))Σ_(n=0) ^∞  ( e^(i(n+1)θ)  −e^(−i(n+1)θ) )x^n   =Σ_(n=0) ^∞  sin((n+1)θ) x^n   =sinθ +sin(2θ)x^2   +sin(3θ)x^3  +....
$${let}\:{put}\:{f}\left({x}\right)=\frac{{sin}\theta}{{x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\theta\:+\mathrm{1}}\:\:{poles}\:{of}\:{f}\left({x}\right)? \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{xcos}\theta\:+\mathrm{1}=\mathrm{0}\: \\ $$$$\Delta^{'} ={cos}^{\mathrm{2}} \theta\:−\mathrm{1}\:=−{sin}^{\mathrm{2}} \theta\:=\left({isin}\theta\right)^{\mathrm{2}} \\ $$$${x}_{\mathrm{1}} ={cos}\theta\:+{isin}\theta\:={e}^{{i}\theta} \:\:{and}\:{x}_{\mathrm{2}} ={e}^{−{i}\theta} \:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\frac{{sin}\theta}{\left({x}−{e}^{{i}\theta} \right)\left({x}−{e}^{−{i}\theta} \right)}\:={sin}\theta\left(\:\frac{\mathrm{1}}{{x}−{e}^{{i}\theta} }\:−\frac{\mathrm{1}}{{x}\:−{e}^{−{i}\theta} }\right).\frac{\mathrm{1}}{\mathrm{2}{isin}\theta} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\:\frac{−\mathrm{1}}{{e}^{{i}\theta} \:−{x}}\:+\frac{\mathrm{1}}{{e}^{−{i}\theta} \:−{x}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\frac{−{e}^{−{i}\theta} }{\mathrm{1}−{xe}^{−{i}\theta} }\:\:+\:\frac{{e}^{{i}\theta} }{\mathrm{1}−{x}\:{e}^{{i}\theta} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\:{e}^{{i}\theta} \sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} \:{e}^{{in}\theta} \:\:−{e}^{−{i}\theta} \:\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} \:{e}^{−{in}\theta} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{{i}\left({n}+\mathrm{1}\right)\theta} \:{x}^{{n}} \:\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{i}\left({n}+\mathrm{1}\right)\theta} {x}^{{n}} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(\:{e}^{{i}\left({n}+\mathrm{1}\right)\theta} \:−{e}^{−{i}\left({n}+\mathrm{1}\right)\theta} \right){x}^{{n}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\left({n}+\mathrm{1}\right)\theta\right)\:{x}^{{n}} \\ $$$$={sin}\theta\:+{sin}\left(\mathrm{2}\theta\right){x}^{\mathrm{2}} \:\:+{sin}\left(\mathrm{3}\theta\right){x}^{\mathrm{3}} \:+…. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *