Menu Close

Question-34205




Question Number 34205 by rahul 19 last updated on 02/May/18
Commented by rahul 19 last updated on 02/May/18
ans. given is ((ρx)/(2ε_0 ))(πa^2 ).
$${ans}.\:{given}\:{is}\:\frac{\rho{x}}{\mathrm{2}\epsilon_{\mathrm{0}} }\left(\pi{a}^{\mathrm{2}} \right). \\ $$
Answered by ajfour last updated on 03/May/18
total flux φ_(tot) = ρ(πa^2 x)/ε_0   field at r=x be E, then  ε_0 E(2πrl)=ρ(πr^2 l)  ⇒   E=((ρr)/(2ε_0 ))  flux through flat circular area  of small cylinder at r=x is     φ_(flat circular)   =E(πa^2 ) = ((ρx)/(2ε_0 ))(πa^2 )  φ_(curved surface) =φ_(tot) −φ_(flat circular)            = ((ρx)/ε_0 )(πa^2 )−((ρx)/(2ε_0 ))(πa^2 )  ⇒    𝛗_(curved)  = ((ρx)/(2ε_0 ))(πa^2 ) .
$${total}\:{flux}\:\phi_{{tot}} =\:\rho\left(\pi{a}^{\mathrm{2}} {x}\right)/\epsilon_{\mathrm{0}} \\ $$$${field}\:{at}\:{r}={x}\:{be}\:{E},\:{then} \\ $$$$\epsilon_{\mathrm{0}} {E}\left(\mathrm{2}\pi{rl}\right)=\rho\left(\pi{r}^{\mathrm{2}} {l}\right) \\ $$$$\Rightarrow\:\:\:{E}=\frac{\rho{r}}{\mathrm{2}\epsilon_{\mathrm{0}} } \\ $$$${flux}\:{through}\:{flat}\:{circular}\:{area} \\ $$$${of}\:{small}\:{cylinder}\:{at}\:{r}={x}\:{is} \\ $$$$\:\:\:\phi_{{flat}\:{circular}} \:\:={E}\left(\pi{a}^{\mathrm{2}} \right)\:=\:\frac{\rho{x}}{\mathrm{2}\epsilon_{\mathrm{0}} }\left(\pi{a}^{\mathrm{2}} \right) \\ $$$$\phi_{{curved}\:{surface}} =\phi_{{tot}} −\phi_{{flat}\:{circular}} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\rho{x}}{\epsilon_{\mathrm{0}} }\left(\pi{a}^{\mathrm{2}} \right)−\frac{\rho{x}}{\mathrm{2}\epsilon_{\mathrm{0}} }\left(\pi{a}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:\:\:\boldsymbol{\phi}_{{curved}} \:=\:\frac{\rho{x}}{\mathrm{2}\epsilon_{\mathrm{0}} }\left(\pi{a}^{\mathrm{2}} \right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *