Menu Close

Question-35174




Question Number 35174 by ajfour last updated on 16/May/18
Commented by ajfour last updated on 16/May/18
Q.35136   (solution)
$${Q}.\mathrm{35136}\:\:\:\left({solution}\right) \\ $$
Answered by ajfour last updated on 16/May/18
ω=ω_0 −((fRt)/((2/5)mR^2 ))  v=((ft)/m) ,    V=−((ft)/m)  when pure rolling on plank begins         −ωR+v=V = ((−ft)/m)  ⇒    −ω_0 R+((5ft)/(2m)) +((ft)/m) = −((ft)/m)       ((9ft)/(2m)) = ω_0 R   with  f=μmg  ⇒   t = ((2𝛚_0 R)/(9𝛍g)) .
$$\omega=\omega_{\mathrm{0}} −\frac{{fRt}}{\frac{\mathrm{2}}{\mathrm{5}}{mR}^{\mathrm{2}} } \\ $$$${v}=\frac{{ft}}{{m}}\:,\:\:\:\:{V}=−\frac{{ft}}{{m}} \\ $$$${when}\:{pure}\:{rolling}\:{on}\:{plank}\:{begins} \\ $$$$\:\:\:\:\:\:\:−\omega{R}+{v}={V}\:=\:\frac{−{ft}}{{m}} \\ $$$$\Rightarrow\:\:\:\:−\omega_{\mathrm{0}} {R}+\frac{\mathrm{5}{ft}}{\mathrm{2}{m}}\:+\frac{{ft}}{{m}}\:=\:−\frac{{ft}}{{m}} \\ $$$$\:\:\:\:\:\frac{\mathrm{9}{ft}}{\mathrm{2}{m}}\:=\:\omega_{\mathrm{0}} {R}\:\:\:{with}\:\:{f}=\mu{mg} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{t}}\:=\:\frac{\mathrm{2}\boldsymbol{\omega}_{\mathrm{0}} \boldsymbol{{R}}}{\mathrm{9}\boldsymbol{\mu{g}}}\:. \\ $$
Commented by Tinkutara last updated on 16/May/18
Thank you very much Sir! I got the answer. ��������

Leave a Reply

Your email address will not be published. Required fields are marked *