Menu Close

Question-35446




Question Number 35446 by ajfour last updated on 19/May/18
Commented by ajfour last updated on 19/May/18
Solution to  Q.35439
$${Solution}\:{to}\:\:{Q}.\mathrm{35439} \\ $$
Answered by ajfour last updated on 19/May/18
dcos θ+R=(a−dsin θ)tan θ  ⇒ d=((atan θ−R)/(cos θ+sin θtan θ))          = asin θ−Rcos θ  r=(√(R^2 −d^2 ))  ⇒   r=(√(R^2 −(asin θ−Rcos θ)^2 )) .
$${d}\mathrm{cos}\:\theta+{R}=\left({a}−{d}\mathrm{sin}\:\theta\right)\mathrm{tan}\:\theta \\ $$$$\Rightarrow\:{d}=\frac{{a}\mathrm{tan}\:\theta−{R}}{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\mathrm{tan}\:\theta} \\ $$$$\:\:\:\:\:\:\:\:=\:{a}\mathrm{sin}\:\theta−{R}\mathrm{cos}\:\theta \\ $$$$\boldsymbol{{r}}=\sqrt{\boldsymbol{{R}}^{\mathrm{2}} −\boldsymbol{{d}}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:{r}=\sqrt{{R}^{\mathrm{2}} −\left({a}\mathrm{sin}\:\theta−{R}\mathrm{cos}\:\theta\right)^{\mathrm{2}} }\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *