Question Number 35544 by tanmay.chaudhury50@gmail.com last updated on 20/May/18
Commented by prof Abdo imad last updated on 20/May/18
$${let}\:\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cosx}}{\:\sqrt{{x}}}{dx}\:\:{and}\:{B}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{\:\sqrt{{x}}}{dx}\:{we}\:{have} \\ $$$${A}\:−{iB}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{ix}} }{\:\sqrt{{x}}}{dx}\:\:{changement}\:\sqrt{{x}}\:={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{ix}} }{\:\sqrt{{x}}}{dx}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{it}^{\mathrm{2}} } }{{t}}\mathrm{2}{tdt} \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{it}^{\mathrm{2}} } {dt}\:\:\:=_{{t}\sqrt{{i}}=\:{u}} \:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{u}^{\mathrm{2}} } \:\:\frac{{dt}}{\:\sqrt{{i}}} \\ $$$$=\:\frac{\mathrm{2}}{{e}^{{i}\frac{\pi}{\mathrm{4}}} }\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}^{\mathrm{2}} } {du}\:=\:\mathrm{2}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \:\:\:\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$=\sqrt{\pi}\left\{\:{cos}\left(\frac{\pi}{\mathrm{4}}\right)−{isin}\left(\frac{\pi}{\mathrm{4}}\right)\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cosx}}{\:\sqrt{{x}}}{dx}\:=\sqrt{\pi}\:\:.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{\:\sqrt{{x}}}{dx}\:=\sqrt{\pi}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$