Menu Close

Question-35544




Question Number 35544 by tanmay.chaudhury50@gmail.com last updated on 20/May/18
Commented by prof Abdo imad last updated on 20/May/18
let  A =∫_0 ^∞  ((cosx)/( (√x)))dx  and B =∫_0 ^∞  ((sinx)/( (√x)))dx we have  A −iB = ∫_0 ^∞   (e^(−ix) /( (√x)))dx  changement (√x) =t give  ∫_0 ^∞  (e^(−ix) /( (√x)))dx = ∫_0 ^∞   (e^(−it^2 ) /t)2tdt  = 2 ∫_0 ^∞   e^(−it^2 ) dt   =_(t(√i)= u)  2 ∫_0 ^∞   e^(−u^2 )   (dt/( (√i)))  = (2/e^(i(π/4)) )  ∫_0 ^∞  e^(−u^2 ) du = 2 e^(−i(π/4))    ((√π)/2)  =(√π){ cos((π/4))−isin((π/4))} ⇒  ∫_0 ^∞   ((cosx)/( (√x)))dx =(√π)  .(1/( (√2))) =(√(π/2))  ∫_0 ^∞   ((sinx)/( (√x)))dx =(√π) (1/( (√2))) =(√(π/2))
$${let}\:\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cosx}}{\:\sqrt{{x}}}{dx}\:\:{and}\:{B}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{\:\sqrt{{x}}}{dx}\:{we}\:{have} \\ $$$${A}\:−{iB}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{ix}} }{\:\sqrt{{x}}}{dx}\:\:{changement}\:\sqrt{{x}}\:={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{ix}} }{\:\sqrt{{x}}}{dx}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{it}^{\mathrm{2}} } }{{t}}\mathrm{2}{tdt} \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{it}^{\mathrm{2}} } {dt}\:\:\:=_{{t}\sqrt{{i}}=\:{u}} \:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{u}^{\mathrm{2}} } \:\:\frac{{dt}}{\:\sqrt{{i}}} \\ $$$$=\:\frac{\mathrm{2}}{{e}^{{i}\frac{\pi}{\mathrm{4}}} }\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}^{\mathrm{2}} } {du}\:=\:\mathrm{2}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \:\:\:\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$=\sqrt{\pi}\left\{\:{cos}\left(\frac{\pi}{\mathrm{4}}\right)−{isin}\left(\frac{\pi}{\mathrm{4}}\right)\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cosx}}{\:\sqrt{{x}}}{dx}\:=\sqrt{\pi}\:\:.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{\:\sqrt{{x}}}{dx}\:=\sqrt{\pi}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *