Menu Close

Question-35798




Question Number 35798 by ajfour last updated on 23/May/18
Commented by ajfour last updated on 23/May/18
△ABC and △CDE are congruent.  Find the area of quadrilateral  APQC in terms of a, b, and c ; the  sides of △ABC .
$$\bigtriangleup{ABC}\:{and}\:\bigtriangleup{CDE}\:{are}\:{congruent}. \\ $$$${Find}\:{the}\:{area}\:{of}\:{quadrilateral} \\ $$$${APQC}\:{in}\:{terms}\:{of}\:{a},\:{b},\:{and}\:{c}\:;\:{the} \\ $$$${sides}\:{of}\:\bigtriangleup{ABC}\:. \\ $$
Commented by ajfour last updated on 23/May/18
Commented by ajfour last updated on 23/May/18
considering △ADP  ((AP)/(sin ∠ADP)) = ((AD)/(sin ∠APD))  ⇒   ((c−BP)/(sin B)) = ((c−b)/(sin (θ+B)))  θ = π−∠A  so     BP=c−(((c−b)sin B)/(sin (A−B)))       .......................  considering △CEQ  ((CQ)/(sin ∠CEQ)) = ((CE)/(sin ∠CQE))  ⇒  ((a−BQ)/(sin C)) = (b/(sin θ(=sin A)))  BQ=a−((bsin C)/(sin A))         .........................  Area(△PBQ)=((BP×BQsin B)/2)  Area(APQC)=Area(△ABC)                                   −Area(△PBQ).
$${considering}\:\bigtriangleup{ADP} \\ $$$$\frac{{AP}}{\mathrm{sin}\:\angle{ADP}}\:=\:\frac{{AD}}{\mathrm{sin}\:\angle{APD}} \\ $$$$\Rightarrow\:\:\:\frac{{c}−{BP}}{\mathrm{sin}\:{B}}\:=\:\frac{{c}−{b}}{\mathrm{sin}\:\left(\theta+{B}\right)} \\ $$$$\theta\:=\:\pi−\angle{A} \\ $$$${so}\:\:\:\:\:{BP}={c}−\frac{\left({c}−{b}\right)\mathrm{sin}\:{B}}{\mathrm{sin}\:\left({A}−{B}\right)} \\ $$$$\:\:\:\:\:………………….. \\ $$$${considering}\:\bigtriangleup{CEQ} \\ $$$$\frac{{CQ}}{\mathrm{sin}\:\angle{CEQ}}\:=\:\frac{{CE}}{\mathrm{sin}\:\angle{CQE}} \\ $$$$\Rightarrow\:\:\frac{{a}−{BQ}}{\mathrm{sin}\:{C}}\:=\:\frac{{b}}{\mathrm{sin}\:\theta\left(=\mathrm{sin}\:{A}\right)} \\ $$$${BQ}={a}−\frac{{b}\mathrm{sin}\:{C}}{\mathrm{sin}\:{A}} \\ $$$$\:\:\:\:\:\:\:……………………. \\ $$$${Area}\left(\bigtriangleup{PBQ}\right)=\frac{{BP}×{BQ}\mathrm{sin}\:{B}}{\mathrm{2}} \\ $$$${Area}\left({APQC}\right)={Area}\left(\bigtriangleup{ABC}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{Area}\left(\bigtriangleup{PBQ}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *