Menu Close

Question-36096




Question Number 36096 by rahul 19 last updated on 28/May/18
Commented by rahul 19 last updated on 30/May/18
??
??
Commented by tanmay.chaudhury50@gmail.com last updated on 30/May/18
i am trying to solve by the following method  1)calculate potential for infinite −ve charge  sheet at p then substruct it by the potential  by disc of radius R ...same for +ve sheet and  then add  2)same method for electric field...  pls wait
iamtryingtosolvebythefollowingmethod1)calculatepotentialforinfinitevechargesheetatpthensubstructitbythepotentialbydiscofradiusRsamefor+vesheetandthenadd2)samemethodforelectricfieldplswait
Commented by tanmay.chaudhury50@gmail.com last updated on 30/May/18
Commented by tanmay.chaudhury50@gmail.com last updated on 30/May/18
Answered by tanmay.chaudhury50@gmail.com last updated on 31/May/18
formula  E=(σ/(2ε_0 ))(1−(z/( (√(z^2 +R^2 )) ))) for charge disc  E=(σ/(2ε_0 )) for infinite sheet  value of z=x+(l/2) for −ve charged sheet  vslue of z=x−(l/2) for +ve charged sheet  now E for −ve charged sheet  =(((−σ))/(2ε_0 ))−(((−σ))/(2ε_0 )){1−(((x+(l/2)))/( (√((x+(l/2))^2 +R^2 ))))}  =(((−σ))/(2ε_0 )){1−1+(((x+(l/2)))/( (√((x+(l/2))^2 +R^2  ))))}  =(((−σ))/(2ε_0 )){(((x+(l/2)))/( (√((x+(l/2))^2 +R^2 ))))}  similarly E for +ve charged sheet  =(((+σ))/(2ε_0 )){(((x−(l/2)))/( (√((x−(l/2))^2 +R^2 ))))}  so net E at p=  (σ/(2ε_0 )){(((x−(l/2)))/( (√((x−(l/2))^2 +R^2 ))))−(((x+(l/2)))/( (√((x+(l/2))^2 +R^2 ))))}  now approximatation...l≫R  =(((x−(l/2)))/((x−(l/2))(√(1_ +((R/(x−(l/2))))^2 ))))  ={1+((R/(x−(l/2))))^2 }^(−(1/2)) ≈1−(1/2)((R/(x−(l/2))))^2     (((x+(l/2)))/((x+(l/2))(√(1+((R/(x+(l/2))))^2 ))))   =(({1+((R/(x+(l/2))))^2 }^((−1)/2) )/)  ≈1−(1/2)((R/(x+(l/2))))^2   =(σ/(2ε_0 )){1−(1/2)((R/(x−(l/2))))^2 −1+(1/2)((R/(x+(l/2))))^2 }  =((σR^2 )/(4ε_0 )){(((x+(l/2))^2 −(x−(l/2))^2 )/((x^2 −(l^2 /4))^2 ))}  =((σR^2 )/(4ε_0 )){((4.x.(l/2))/((x^2 −(l^2 /4))^2 ))}  =((σR^2 xl)/(2ε_0 (x^2 −(l^2 /4))^2 ))  ≈((σR^2 xl)/(2ε_0 x^4 ))         considering (x≫(l/2))  =((σR^2 l)/(2ε_0 x^3 ))  pls check and suggest
formulaE=σ2ϵ0(1zz2+R2)forchargediscE=σ2ϵ0forinfinitesheetvalueofz=x+l2forvechargedsheetvslueofz=xl2for+vechargedsheetnowEforvechargedsheet=(σ)2ϵ0(σ)2ϵ0{1(x+l2)(x+l2)2+R2}=(σ)2ϵ0{11+(x+l2)(x+l2)2+R2}=(σ)2ϵ0{(x+l2)(x+l2)2+R2}similarlyEfor+vechargedsheet=(+σ)2ϵ0{(xl2)(xl2)2+R2}sonetEatp=σ2ϵ0{(xl2)(xl2)2+R2(x+l2)(x+l2)2+R2}nowapproximatationlR=(xl2)(xl2)1+(Rxl2)2={1+(Rxl2)2}12112(Rxl2)2(x+l2)(x+l2)1+(Rx+l2)2={1+(Rx+l2)2}12112(Rx+l2)2=σ2ϵ0{112(Rxl2)21+12(Rx+l2)2}=σR24ϵ0{(x+l2)2(xl2)2(x2l24)2}=σR24ϵ0{4.x.l2(x2l24)2}=σR2xl2ϵ0(x2l24)2σR2xl2ϵ0x4considering(xl2)=σR2l2ϵ0x3plscheckandsuggest

Leave a Reply

Your email address will not be published. Required fields are marked *