Menu Close

Question-36099




Question Number 36099 by rahul 19 last updated on 28/May/18
Commented by rahul 19 last updated on 01/Jun/18
Help in Q. 1.
HelpinQ.1.
Commented by rahul 19 last updated on 31/Aug/18
Thank you prof Abdo :)
ThankyouprofAbdo:)
Commented by maxmathsup by imad last updated on 31/Aug/18
2) we have f(x+1)=(−1)^(x+1) x−2f(x)   x from N f(1)=f(1986)  let find  S =f(1)+f(2)+....f(1985)  we have Σ_(k =1) ^(1985)  f(k+1) =Σ_(k=1) ^(1985) k(−1)^(k+1)  −2 Σ_(k=1) ^(1985)  f(k) ⇒  Σ_(k=2) ^(1986)  f(k) = Σ_(k=1) ^(1985)  k(−1)^(k+1)  −2 S ⇒Σ_(k=1) ^(1985)  f(k) +f(1986)−f(1)  =−2S −Σ_(k=1) ^(1985)  k(−1)^k  ⇒3S =−Σ_(k=1) ^(1985)  k(−1)^k         for x≠1  let p(x)=Σ_(k=0) ^n  x^k  ⇒p^′ (x) =Σ_(k=1) ^n  k x^(k−1)  ⇒x p^′ (x)= Σ_(k=1) ^n  k x^(k  )   but  p(x)=((x^(n+1) −1)/(x−1)) ⇒p^′ (x) =((nx^(n+1)  −(n+1)x^n  +1)/((x−1)^2 )) ⇒  Σ_(k=1) ^n  k x^k  = (x/((x−1)^2 )){ nx^(n+1)  −(n+1)x^n  +1} ⇒  Σ_(k=1) ^n  k(−1)^k   = ((−1)/4){n(−1)^(n+1)  −(n+1)(−1)^n  +1}  =−(1/4){1−(2n+1)(−1)^n } =(((2n+1)(−1)^n  −1)/4) ⇒  Σ_(k=1) ^(1985)  k(−1)^k  = ((−(2×1985 +1)−1)/4) =((−3972)/4)  =−993 ⇒  3S =993 ⇒ S =331 .
2)wehavef(x+1)=(1)x+1x2f(x)xfromNf(1)=f(1986)letfindS=f(1)+f(2)+.f(1985)wehavek=11985f(k+1)=k=11985k(1)k+12k=11985f(k)k=21986f(k)=k=11985k(1)k+12Sk=11985f(k)+f(1986)f(1)=2Sk=11985k(1)k3S=k=11985k(1)kforx1letp(x)=k=0nxkp(x)=k=1nkxk1xp(x)=k=1nkxkbutp(x)=xn+11x1p(x)=nxn+1(n+1)xn+1(x1)2k=1nkxk=x(x1)2{nxn+1(n+1)xn+1}k=1nk(1)k=14{n(1)n+1(n+1)(1)n+1}=14{1(2n+1)(1)n}=(2n+1)(1)n14k=11985k(1)k=(2×1985+1)14=39724=9933S=993S=331.
Commented by maxmathsup by imad last updated on 31/Aug/18
nevermind sir.
nevermindsir.

Leave a Reply

Your email address will not be published. Required fields are marked *