Menu Close

Question-36450




Question Number 36450 by Raj Singh last updated on 02/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
Commented by ajfour last updated on 03/Jun/18
right!
$${right}! \\ $$
Answered by ajfour last updated on 02/Jun/18
3^x =5^y =3^z (5^2 )^z   ⇒  xln 3=yln 5=zln 3+2zln 5  ⇒  y=((xln 3)/(ln 5))        ....(i)        z=((xln 3)/(ln 3+2ln 5))= ((x(((ln 3)/(ln 5))))/((((ln 3)/(ln 5)))+2))  using (i)            z = (y/((y/x)+2)) = ((xy)/(2x+y)) .
$$\mathrm{3}^{{x}} =\mathrm{5}^{{y}} =\mathrm{3}^{{z}} \left(\mathrm{5}^{\mathrm{2}} \right)^{{z}} \\ $$$$\Rightarrow\:\:{x}\mathrm{ln}\:\mathrm{3}={y}\mathrm{ln}\:\mathrm{5}={z}\mathrm{ln}\:\mathrm{3}+\mathrm{2}{z}\mathrm{ln}\:\mathrm{5} \\ $$$$\Rightarrow\:\:{y}=\frac{{x}\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{5}}\:\:\:\:\:\:\:\:….\left({i}\right) \\ $$$$\:\:\:\:\:\:{z}=\frac{{x}\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{3}+\mathrm{2ln}\:\mathrm{5}}=\:\frac{{x}\left(\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{5}}\right)}{\left(\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{5}}\right)+\mathrm{2}} \\ $$$${using}\:\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{z}\:=\:\frac{{y}}{\frac{{y}}{{x}}+\mathrm{2}}\:=\:\frac{{xy}}{\mathrm{2}{x}+{y}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *